Abdallah, A., W., E., Abdallah, A., Elsharkawy, S., Saeed, S., Ebrahim, N., Abdelgalil, A., Shamaa, A. (2025). Recent Advances in Composite Materials for the Treatment of Critical-Size Bone Defects: A narrative review. Journal of Applied Veterinary Sciences, 10(2), 110-127. doi: 10.21608/javs.2025.359578.1535
Amr H. Abdallah; El-Ghoul W.; Ahmed N. Abdallah; Samar H. Elsharkawy; Samar Saeed; Nesrine Ebrahim; Ahmed I. Abdelgalil; Ashraf A. Shamaa. "Recent Advances in Composite Materials for the Treatment of Critical-Size Bone Defects: A narrative review". Journal of Applied Veterinary Sciences, 10, 2, 2025, 110-127. doi: 10.21608/javs.2025.359578.1535
Abdallah, A., W., E., Abdallah, A., Elsharkawy, S., Saeed, S., Ebrahim, N., Abdelgalil, A., Shamaa, A. (2025). 'Recent Advances in Composite Materials for the Treatment of Critical-Size Bone Defects: A narrative review', Journal of Applied Veterinary Sciences, 10(2), pp. 110-127. doi: 10.21608/javs.2025.359578.1535
Abdallah, A., W., E., Abdallah, A., Elsharkawy, S., Saeed, S., Ebrahim, N., Abdelgalil, A., Shamaa, A. Recent Advances in Composite Materials for the Treatment of Critical-Size Bone Defects: A narrative review. Journal of Applied Veterinary Sciences, 2025; 10(2): 110-127. doi: 10.21608/javs.2025.359578.1535
Recent Advances in Composite Materials for the Treatment of Critical-Size Bone Defects: A narrative review
1Department of Surgery, Anaesthesiology and Radiology- Faculty of Veterinary Medicine- Cairo University, Giza 12211, Egypt
2Department of Hormones, Veterinary Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza, P.O. Box 12622, Egypt
3National Institute of Laser Enhanced Sciences, Cairo University, Giza 12613, Egypt
4Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, QG, Egypt; Stem Cell Unit, Faculty of Medicine, Benha University, Benha 13518, QG, Egypt
5Department of Surgery, Anesthesiology and Radiology- Faculty of Veterinary Medicine- Cairo University, Giza 12211, Egypt
Receive Date: 18 February 2025,
Revise Date: 15 March 2025,
Accept Date: 22 March 2025
Abstract
Critical-sized bone defects (CSBDs) are a significant issue in reconstructive surgery, demanding the development of improved biomaterials to promote bone regeneration. Composite materials have emerged as attractive alternatives because of their ability to approximate native bone's hierarchical structure while also providing specific mechanical and biological qualities. IN this narrative review, a complete discussion of material selection for composite construction including bio ceramics, polymers, and bioactive agents were summarized. this review determines the most recent fabrication techniques used in composite synthesis, such as solvent casting, electrospinning, freeze-drying, and 3D printing, focusing on their effects on structural integrity and bioactivity. Details of the most used composites were also summarized. Additionally, different bone healing assessment approaches were explored to determine the efficacy of these composites in promoting bone regeneration. Over all the composites containing biomaterials like natural bone, such as hydroxyapatite and collagen, are the most widely used composites, due to their excellent osteoconductivity, biocompatibility, and mechanical properties.Fabrication methods are tailored to the desired composite properties, electrospinning is the choice for the precise fabrication of nanofibrous composites with high surface area. While Sol-gel processing was used if high-purity, bioactive ceramic-polymer composites are required. Additionally freeze-drying method was used if a highly porous composite structure was required for rapid vascularization. Micro-CT is the most reliable technique for non-destructively analyzing the structure, degradation, and osseointegration of composites using high-resolution imaging. In conclusion Composites are expected to provide an effective long-term solution for CSBD and offer insight that may inform future human bone regeneration strategies and veterinary regenerative therapies.
ABBAS, K.F., TAWFIK, H., HASHEM, A.A.R., AHMED, H.M.A., ABU‐SEIDA, A.M., and REFAI, H.M., 2020. Histopathological evaluation of different regenerative protocols using Chitosan‐based formulations for management of immature non‐vital teeth with apical periodontitis: in vivo study. Australian Endodontic Journal, 46(3), pp.405-414. https://doi.org/10.1111/aej.12426
ABBASI, N., HAMLET, S., LOVE, R.M., and NGUYEN, N.T., 2020. Porous scaffolds for bone regeneration. Journal of science: advanced materials and devices, 5(1), pp.1-9. https://doi.org/10.1016/j.jsamd.2020.01.007
ABD-ELAZIEM, W., DARWISH, M.A., HAMADA, A., and DAOUSH, W.M., 2024. Titanium-Based alloys and composites for orthopedic implants Applications: A comprehensive review. Materials & Design, p.112850.https://doi.org/10.1016/j.matdes.2024.112850
ABDELAZIZ, A.G., NAGEH, H., ABDO, S.M., ABDALLA, M.S., AMER, A.A., ABDAL-HAY, A., and BARHOUM, A., 2023. A review of 3D polymeric scaffolds for bone tissue engineering: principles, fabrication techniques, immunomodulatory roles, and challenges. Bioengineering, 10(2), p.204. https://doi.org/10.3390/bioengineering10020204
ABDOLAHINIA, E.D., AMIRYAGHOUBI, N., FATHI, M., BARAR, J., and OMIDI, Y., 2024. Recent advances in injectable nanocomposite hydrogels. Nano-Structures & Nano-Objects, 39, p.101254. https://doi.org/10.1016/j.nanoso.2024.101254
ABDULHUSSAIN, R., ADEBISI, A., CONWAY, B.R., and ASARE-ADDO, K., 2023. Electrospun nanofibers: Exploring process parameters, polymer selection, and recent applications in pharmaceuticals and drug delivery. Journal of Drug Delivery Science and Technology, 90, p.105156.https://doi.org/10.1016/j.jddst.2023.105156
ABUBAKRE, O.K., MEDUPIN, R.O., AKINTUNDE, I.B., JIMOH, O.T., ABDULKAREEM, A.S., MURIANA, R.A., JAMES, J.A., UKOBA, K.O., JEN, T.C., and YORO, K.O., 2023. Carbon nanotube-reinforced polymer nanocomposites for sustainable biomedical applications: A review. Journal of Science: Advanced Materials and Devices, 8(2), p.100557. https://doi.org/10.1016/j.jsamd.2023.100557
AGRAWAL, S., and SRIVASTAVA, R., 2020. Osteoinductive and osteoconductive biomaterials. Racing for the Surface: Antimicrobial and Interface Tissue Engineering, pp.355-395. https://doi.org/10.1007/978-3-030-34471-9_15
AI, F., CHEN, L., YAN, J., YANG, K., LI, S., DUAN, H., CAO, C., LI, W., and ZHOU, K., 2020. Hydroxyapatite scaffolds containing copper for bone tissue engineering. Journal of Sol-Gel Science and Technology, 95, pp.168-179. https://doi.org/10.1007/s10971-020-05285-0
ALHUSSARY, B.N., A TAQA, G., and TAQA, A.A.A., 2020. Preparation and characterization of natural nano hydroxyapatite from eggshell and seashell and its effect on bone healing. Journal of Applied Veterinary Sciences, 5(2), pp.25-32. https://dx.doi.org/10.21608/javs.2020.85567
ALONSO-FERNÁNDEZ, I., HAUGEN, H.J., LOPEZ-PEÑA, M., GONZALEZ-CANTALAPIEDRA, A., and MUÑOZ, F., 2023. Use of 3D-printed polylactic acid/bioceramic composite scaffolds for bone tissue engineering in preclinical in vivo studies: A systematic review. Acta Biomaterialia, 168, pp.1-21. https://doi.org/10.1016/j.actbio.2023.07.013
AMIRYAGHOUBI, N., FATHI, M., BARAR, J., OMIDIAN, H., and OMIDI, Y., 2022. Recent advances in graphene-based polymer composite scaffolds for bone/cartilage tissue engineering. Journal of Drug Delivery Science and Technology, 72, p.103360. https://doi.org/10.1016/j.jddst.2022.103360
ATIYAH, A.G., and LM, A., 2024. Impact of Fabricated Coral Shell Hydroxyapatite Powder and Autologous Plasma Rich-fibrin in Remodeling of the Mandibular Bone Critical Size Defect in Dogs: Histopathological and Immunohistochemical Study. Journal of Applied Veterinary Sciences, 9(2), pp.111-119.https://dx.doi.org/10.21608/javs.2024.266431.1312
BALAJI, V.R., MANIKANDAN, D., and RAMSUNDAR, A., 2020. Bone grafts in periodontics. Matrix Science Medica, 4(3), pp.57-63. http://dx.doi.org/10.4103/MTSM.MTSM_2_19
BALU, S., ANDRA, S., JEEVANANDAM, J., and DANQUAH, M.K., 2021. Bioactive glass composites: From synthesis to application. In Green Biocomposites for Biomedical Engineering (pp. 65-96). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-821553-1.00009-0
BAR, I., ZILBERMAN, Y., ZEIRA, E., GALUN, E., HONIGMAN, A., TURGEMAN, G., CLEMENS, T., Gazit, Z., and GAZIT, D., 2003. Molecular imaging of the skeleton: Quantitative real‐time bioluminescence monitoring gene expression in bone repair and development. Journal of Bone and Mineral Research, 18(3), pp.570-578. https://doi.org/10.1359/jbmr.2003.18.3.570
BARBIERI, D., DE BRUIJN, J.D., LUO, X., FARÈ, S., GRIJPMA, D.W., and YUAN, H., 2013. Controlling dynamic mechanical properties and degradation of composites for bone regeneration by means of filler content. Journal of the mechanical behavior of biomedical materials, 20, pp.162-172. https://doi.org/10.1016/j.jmbbm.2013.01.012
BASUTKAR, A.G., and KOLEKAR, A., 2015. A review on properties and applications of ceramic matrix composites. Int J Res Sci Innov, 2(28), pp.10-13140. http://dx.doi.org/10.13140/RG.2.2.20304.53766
BELAID, H., NAGARAJAN, S., TEYSSIEE, C., BAROU, C., BARÉS, J., BALME, S., GARAY, H., HUON, V., CORNU, D., CAVAILLES, V., and BECHELANY, M., 2020. Development of new biocompatible 3D printed graphene oxide-based scaffolds. Materials Science and Engineering: C, 110, p.110595. https://doi.org/10.1016/j.msec.2019.110595
BEZSTAROSTI, H., METSEMAKERS, W.J., VAN LIESHOUT, E.M.M., VOSKAMP, L.W., KORTRAM, K., MCNALLY, M.A., MARAIS, L.C., and VERHOFSTAD, M.H.J., 2021. Management of critical-sized bone defects in the treatment of fracture-related infection: a systematic review and pooled analysis. Archives of Orthopaedic and Trauma Surgery, 141, pp.1215-1230. https://doi.org/10.1007/s00402-020-03525-0
BHONG, M., KHAN, T.K., DEVADE, K., KRISHNA, B.V., SURA, S., EFTKHAAR, H.K., THETHI, H.P., and GUPTA, N., 2023. Review of composite materials and applications. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.10.026
BIGLARI, N., and ZARE, E.N., 2024. Conjugated polymer-based composite scaffolds for tissue engineering and regenerative medicine. Alexandria Engineering Journal, 87, pp.277-299. https://doi.org/10.1016/j.matpr.2023.10.026
BISTOLFI, A., MASSAZZA, G., VERNÉ, E., MASSÉ, A., DELEDDA, D., FERRARIS, S., MIOLA, M., GALETTO, F., and CROVA, M., 2011. Antibiotic‐loaded cement in orthopedic surgery: a review. International Scholarly Research Notices, 2011(1), p.290851. https://doi.org/10.5402/2011/290851
BlÄSIUS, F., DElBRÜCK, H., HILDEBRAND, F., and HOFMANN, U.K., 2022. Surgical treatment of bone sarcoma. Cancers, 14(11), p.2694. https://doi.org/10.3390/cancers14112694
BOHNER, M., SANTONI, B.L.G., and DÖBELIN, N., 2020. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta biomaterialia, 113, pp.23-41. https://doi.org/10.1016/j.actbio.2020.06.022
C ECHAVE, M., S BURGO, L., L PEDRAZ, J., and ORIVE, G., 2017. Gelatin as biomaterial for tissue engineering. Current pharmaceutical design, 23(24), pp.3567-3584. http://dx.doi.org/10.2174/0929867324666170511123101
CANCIANI, E., STRATICÒ, P., VARASANO, V., DELLAVIA, C., SCIARRINI, C., PETRIZZI, L., RIMONDINI, L., and VARONI, E.M., 2023. Polylevolysine and fibronectin-loaded nano-hydroxyapatite/PGLA/dextran-based scaffolds for improving bone regeneration: a histomorphometric in animal study. International Journal of Molecular Sciences, 24(9), p.8137. https://doi.org/10.3390/ijms24098137
CAO, Y., ZHANG, H., QIU, M., ZHENG, Y., SHI, X., and YANG, J., 2024. Biomimetic injectable and bilayered hydrogel scaffold based on collagen and chondroitin sulfate for the repair of osteochondral defects. International Journal of Biological Macromolecules, 257, p.128593. https://doi.org/10.1016/j.ijbiomac.2023.128593
CHEN, J., ASHAMES, A., BUABEID, M.A., FAHELELBOM, K.M., IJAZ, M., and MURTAZA, G., 2020. Nanocomposites drug delivery systems for the healing of bone fractures. International Journal of Pharmaceutics, 585, p.119477. https://doi.org/10.1016/j.ijpharm.2020.119477
CHEN, Y., and Li, X., 2022. The utilization of carbon-based nanomaterials in bone tissue regeneration and engineering: Respective featured applications and future prospects. Medicine in Novel Technology and Devices, 16, p.100168. https://doi.org/10.1016/j.medntd.2022.100168
CHENG, L., LIN, T., KHALAF, A.T., ZHANG, Y., HE, H., YANG, L., YAN, S., ZHU, J., and SHI, Z., 2021. The preparation and application of calcium phosphate biomedical composites in filling of weight-bearing bone defects. Scientific Reports, 11(1), p.4283. https://doi.org/10.1038/s41598-021-83941-3
CHOTIYARNWONG, P., and MCCLOSKEY, E.V., 2020. Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nature Reviews Endocrinology, 16(8), pp.437-447.https://doi.org/10.1038/s41574-020-0341-0
CONWAY, M., Xu, T., KIRKPATRICK, A., RIPP, S., SAYLER, G., and ClOSE, D., 2020. Real-time tracking of stem cell viability, proliferation, and differentiation with autonomous bioluminescence imaging. BMC biology, 18, pp.1-14. https://doi.org/10.1186/s12915-020-00815-2
COOKE, M.E., RAMIREZ-GARCIALUNA, J.L., RANGEL-BERRIDI, K., PARK, H., NAZHAT, S.N., WRBER, M.H., HENDERSON, J.E., and ROSENZWEIG, D.H., 2020. 3D printed polyurethane scaffolds for the repair of bone defects. Frontiers in bioengineering and biotechnology, 8, p.557215. https://doi.org/10.3389/fbioe.2020.557215
COX, G., EINHORN, T.A., TZIOUPIS, C., and GIANNOUDIS, P.V., 2010. Bone-turnover markers in fracture healing. The Journal of Bone & Joint Surgery British Volume, 92(3), pp.329-334. https://doi.org/10.1302/0301-620X.92B3.22787
CUNNINGHAM, B.P., BRAZINA, S., MORSHED, S., and MICLAU III, T., 2017. Fracture healing: A review of clinical, imaging and laboratory diagnostic options. Injury, 48, pp. S69-S75. https://doi.org/10.1016/j.injury.2017.04.020
DACHASA, K., CHUNI AKLILU, T., GASHAW EWNETE, B., MOSISA EJETA, B., and FUFA BAKARE, F., 2024. Magnesium‐Based Biodegradable Alloy Materials for Bone Healing Application. Advances in Materials Science and Engineering, 2024(1), p.1325004. https://doi.org/10.1155/2024/1325004
DAGL, M.T., and MORRISON, S., 2021. Segmental bone defects and the history of bone transport. Journal of Orthopaedic Trauma, 35, pp. S1-S7. https://doi.org/10.1097/bot.0000000000002124
D'AMORA, U., GLORIA, A., and AMBROSIO, L., 2017. Composite materials for ligaments and tendons replacement. In Biomedical Composites (pp. 215-235). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100752-5.00010-X
DANESHMANDI, L., BARAJAA, M., TAHMASBI RAD, A., SYDLIK, S.A., and LAURENCIN, C.T., 2021. Graphene‐based biomaterials for bone regenerative engineering: a comprehensive review of the field and considerations regarding biocompatibility and biodegradation. Advanced healthcare materials, 10(1), p.2001414. https://doi.org/10.1002/adhm.202001414
DEWEY, M.J., MILNER, D.J., WEISGERBER, D., FLANAGAN, C.L., RUBESSA, M., LOTTI, S., POLKOFF, K.M., CROTTS, S., HOLLISTER, S.J., WHEELER, M.B., and HARLET, B.A., 2021. Repair of critical-size porcine craniofacial bone defects using a collagen–polycaprolactone composite biomaterial. Biofabrication, 14(1), p.014102. https://doi.org/10.1088/1758-5090/ac30d5
DHAND, C., ONG, S.T., DWIVEDI, N., DIAZ, S.M., VENUGOPAL, J.R., NAVANEETHAN, B., FAZIL, M.H., LIU, S., SEITZ, V., WINTERMANTEL, E., and BEUERMAN, R.W., 2016. Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering. Biomaterials, 104, pp.323-338. https://doi.org/10.1016/j.biomaterials.2016.07.007
DI CARLO, S., DE ANGELIS, F., BRAUNER, E., ROSELLA, D., PAP, P., POMPA, G., SAPTEFRATI, L., CIMPEAN, A.M., and CIOBANU, G., 2018. Histological and immunohistochemical evaluation of mandibular bone tissue regeneration. International Journal of Immunopathology and Pharmacology, 32, p.2058738418798249. https://doi.org/10.1177/2058738418798249
DU, C., JIN, J., LI, Y., KONG, X., WEI, K., and YAO, J., 2009. Novel silk fibroin/hydroxyapatite composite films: structure and properties. Materials Science and Engineering: C, 29(1), pp.62-68. https://doi.org/10.1016/j.msec.2008.05.010
DU, Z., LENG, H., GUO, L., HUANG, Y., ZHENG, T., ZHAO, Z., LIU, X., ZHANG, X., CAI, Q., and YANG, X., 2020. Calcium silicate scaffolds promoting bone regeneration via the doping of Mg2+ or Mn2+ ion. Composites Part B: Engineering, 190, p.107937. https://doi.org/10.1016/j.compositesb.2020.107937
DZIAEK, M., DZIADEK, K., CHECINSKA, K., ZAGRAJCZUK, B., GOLDA-CEPA, M., BRZYCHCZY-WLOCH, M., MENASZE, E., KOPEC, A., and CHOLEWA-KOWALSKA, K., 2021. PCL and PCL/bioactive glass biomaterials as carriers for biologically active polyphenolic compounds: Comprehensive physicochemical and biological evaluation. Bioactive Materials, 6(6), pp.1811-1826. https://doi.org/10.1016/j.bioactmat.2020.11.025
EL-ASHRY, S.H., ABU-SEIDA, A.M., and EMARA, R.A., 2016. The influence of addition of osteogenic supplements to mineral trioxide aggregate on the gene expression level of odontoblastic markers following pulp capping in dogs. http://hrcak.srce.hr/file/247259
EL-BAHRAWY, N.R., ELGHARBAWY, H., ELMEKAWY, A., SALEM, M., and MORSY, R., 2024. Development of porous hydroxyapatite/PVA/gelatin/alginate hybrid flexible scaffolds with improved mechanical properties for bone tissue engineering. Materials Chemistry and Physics, 319, p.129332 https://doi.org/10.1016/j.matchemphys.2024.129332
FERBERT, T., MÜNCH, C., FINDEISEN, S., PAULY, W., MISKA, M., GROSSNER, T., TANNER, M.C., SCHMIDMAIER, G., and HELBIG, L., 2023. Effect of tricalcium phosphate on healing of non-unions: an observational study of over 400 non-unions. Therapeutics and Clinical Risk Management, pp.395-404. https://doi.org/10.2147/TCRM.S409119
FEROZ, S., and DIAS, G., 2021. Hydroxypropylmethyl cellulose (HPMC) crosslinked keratin/hydroxyapatite (HA) scaffold fabrication, characterization and in vitro biocompatibility assessment as a bone graft for alveolar bone regeneration. Heliyon, 7(11). https://doi.org/10.1016/j.heliyon.2021.e08294
FILIPPI, M., BORN, G., CHAABAN, M., and SCHERBERICH, A., 2020. Natural polymeric scaffolds in bone regeneration. Frontiers in bioengineering and biotechnology, 8, p.474. https://doi.org/10.3389/fbioe.2020.00474
FRAILE-MARTÍNEZ, O., GARCÍA-MONTERO, C., COCA, A., ÁLVAREZ-MON, M.A., MONSERRAT, J., GÓMEZ-LAHOZ, A.M., COCA, S., ÁLVAREZ-MON, M., ACERO, J., BUJAN, J., and GARCÍA-HONDUVILLA, N., 2021. Applications of polymeric composites in bone tissue engineering and jawbone regeneration. Polymers, 13(19), p.3429. https://doi.org/10.3390/polym13193429
FRANCIS, A. 2018. Progress in polymer-derived functional silicon-based ceramic composites for biomedical and engineering applications. Materials Research Express, 5(6), p.062003. http://dx.doi.org/10.1088/2053-1591/aacd28
GADALLAH, S.M., ABD-ELKAWI, M., MISK, T.N., and SHARSHAR, A.M., 2022. The efficacy of nano-calcium carbonate derived from coral reefs and nano-silver to induce new bone formation in critical radial bone defect in rabbits: Radiological evaluation. Journal of Current Veterinary Research, 4(2), pp.113-123. https://dx.doi.org/10.21608/jcvr.2022.267519
GARCÍA-GARETA, E., COATHUP, M.J., and BLUNN, G.W., 2015. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone, 81, pp.112-121.https://doi.org/10.1016/j.bone.2015.07.007
GENG, Y., DUAN, H., XU, L., WITMAN, N., YAN, B., YU, Z., WANG, H., TAN, Y., LIN, L., LI, D., and BAI, S., 2021. BMP-2 and VEGF-A modRNAs in collagen scaffold synergistically drive bone repair through osteogenic and angiogenic pathways. Communications Biology, 4(1), p.82. https://doi.org/10.1038/s42003-020-01606-9
GENTILE, P., CHIONO, V., CARMAGNOLA, I., and HATTON, P.V., 2014. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. International journal of molecular sciences, 15(3), pp.3640-3659. https://doi.org/10.3390/ijms15033640
GHOSH, S., and WEBSTER, T.J., 2021. Metallic nanoscaffolds as osteogenic promoters: Advances, challenges and scope. Metals, 11(9), p.1356.https://doi.org/10.3390/met11091356
GIRÓN, J., KERSTNER, E., MEDEIROS, T., OlIVEIRA, L., MACHADO, G.M., MALFATTI, C.F., and PRANKE, P. 2021. Biomaterials for bone regeneration: An orthopedic and dentistry overview. Brazilian Journal of Medical and Biological Research, 54, p.e11055. https://doi.org/10.1590/1414-431X2021e11055
GLORIA, A., RUSSO, T., DE SANTIS, R., and AMBROSIO, L., 2017. Composite materials for spinal implants. In Biomedical composites (pp. 139-161). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100752-5.00007-X
GOLNIYA, Z., KALANTAR, M., POURSAMAR, S.A., RAFIENIA, M., and MIRANDA, P., 2024. Fabrication and characterization of 3D-printed antibacterial bioactive glass/polycaprolactone nanocomposite scaffolds. Journal of Polymers and the Environment, 32(9), pp.4159-4181. https://doi.org/10.1007/s10924-024-03202-y
GRANÉLI, C., THORFVE, A., RUETSCHI, U., BRISBY, H., THOSEN, P., LINDAHI, A., and KARLSSON, C., 2014. Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach. Stem cell research, 12(1), pp.153-165. https://doi.org/10.1016/j.scr.2013.09.009
GUO, L., LIANG, Z., YANG, L., DU, W., YU, T., TANG, H., LI, C., and QIU, H., 2021. The role of natural polymers in bone tissue engineering. Journal of Controlled Release, 338, pp.571-582. https://doi.org/10.1016/j.jconrel.2021.08.055
GUO, X., SONG, P., LI, F., YAN, Q., BAI, Y., HE, J., CHE, Q., CAO, H., GUO, J., and SU, Z., 2023. Research progress of design drugs and composite biomaterials in bone tissue engineering. International Journal of Nanomedicine, pp.3595-3622. https://doi.org/10.2147/IJN.S415666
HAMMAMI, I., GAVINHO, S.R., PÁDUA, A.S., SÁ-NOGUEIRA, I., SILVA, J.C., BORGES, J.P., VALENTE, M.A., and GRACA, M.P.F., 2023. Bioactive Glass Modified with Zirconium Incorporation for Dental Implant Applications: Fabrication, Structural, Electrical, and Biological Analysis. International Journal of Molecular Sciences, 24(13), p.10571.https://doi.org/10.3390/ijms241310571
HE, L., YIN, J., and GAO, X., 2023. Additive manufacturing of bioactive glass and its polymer composites as bone tissue engineering scaffolds: A review. Bioengineering, 10(6), p.672.https://doi.org/10.3390/bioengineering10060672
HE, Y., LUO, Z., NIE, X., DU, Y., SUN, R., SUN, J., LIN, Z., WAN, R., CHEN, W., FENG, X., and LI, F., 2025. An injectable multi-functional composite bioactive hydrogel for bone regeneration via immunoregulatory and osteogenesis effects. Advanced Composites and Hybrid Materials, 8(1), p.128. https://doi.org/10.1007/s42114-025-01213-4
HEIMBACH, B., TONYALI, B., ZHANG, D., and WEI, M., 2018. High performance resorbable composites for load-bearing bone fixation devices. Journal of the Mechanical Behavior of Biomedical Materials, 81, pp.1-9. https://doi.org/10.1016/j.jmbbm.2018.01.031
HENTE, R., CORDEY, J., and PERREN, S.M., 2003. In vivo measurement of bending stiffness in fracture healing. BioMedical Engineering OnLine, 2, pp.1-16. https://doi.org/10.1186/1475-925X-2-8
HUANG, X., SU, S., XU, Z., MIAO, Q., LI, W., and WANG, L., 2023. Advanced composite materials for structure strengthening and resilience improvement. Buildings, 13(10), p.2406. https://doi.org/10.3390/buildings13102406
IELO, I., CALABRESE, G., DE LUCA, G., and CONOCI, S., 2022. Recent advances in hydroxyapatite-based biocomposites for bone tissue regeneration in orthopedics. International journal of molecular sciences, 23(17), p.9721. https://doi.org/10.3390/ijms23179721
IMTIAZ, H., RIAZ, M., ANEES, E., BASHIR, F., and HUSSAIN, T., 2025. Biodegradable Zinc-Magnesium Alloys for Bone Fixation: A Study of Their Structural Integrity, Corrosion Resistance, and Mechanical Properties. Materials Chemistry and Physics, p.130429. https://doi.org/10.1016/j.matchemphys.2025.130429
JAIN, K.G., MOHANTY, S., RAY, A.R., MALHOTRA, R., and AIRAN, B., 2015. Culture & differentiation of mesenchymal stem cell into osteoblast on degradable biomedical composite scaffold: In vitro: study. Indian Journal of Medical Research, 142(6), pp.747-758. https://doi.org/10.4103/0971-5916.174568
JOSEPH, B., JOSE, C., KAVIL, S.V., KALARIKKAL, N., and THOMAS, S., 2023. Solvent‐Casting Approach for Design of Polymer Scaffolds and Their Multifunctional Applications. Functional Biomaterials: Design and Development for Biotechnology, Pharmacology, and Biomedicine, 2, pp.371-394. https://doi.org/10.1002/9783527827657.ch12
KAMIL, N.İ.K. 2022. Cytotoxicity and Biocompatibility of Biobased Materials. In Biobased Materials: Recent Developments and Industrial Applications (pp. 17-34). Singapore: Springer Nature Singapore.https://doi.org/10.1007/978-981-19-6024-6_2
KAUR, M., and SINGH, K., 2019. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Materials Science and Engineering: C, 102, pp.844-862. https://doi.org/10.1016/j.msec.2019.04.064
KAZIMIERCZAK, P., and PRZEKORA, A., 2020. Osteoconductive and osteoinductive surface modifications of biomaterials for bone regeneration: A concise review. Coatings, 10(10), p.971. https://doi.org/10.3390/coatings10100971
KHAN, W.S., RAYAN, F., DHINSA, B.S., and MARSH, D., 2012. An osteoconductive, osteoinductive, and osteogenic tissue‐engineered product for trauma and orthopaedic surgery: How far are we?. Stem cells international, 2012(1), p.236231. https://doi.org/10.1155/2012/236231
KHODAVERDI, K., NAGHIB, S.M., MOZAFARI, M.R., and RAHMANIAN, M., 2024. Chitosan/hydroxyapatite hydrogels for localized drug delivery and tissue engineering: A Review. Carbohydrate Polymer Technologies and Applications, p.100640. https://doi.org/10.1016/j.carpta.2024.100640
KHORASHADIZADE, F., ABAZARI, S., RAJABI, M., BAKHSHESHI-RAD, H.R., ISMAIL, A.F., SHARIF, S., RAMAKRISHNA, S., and BERTO, F., 2021. Overview of magnesium-ceramic composites: mechanical, corrosion and biological properties. journal of materials research and technology, 15, pp.6034-6066. https://doi.org/10.1016/j.jmrt.2021.10.141
KHOSRONEJAD, A., ARABION, H., IRAJI, A., MOKHTARZADEGAN, M., DANESHI, S.S., ASADI-YOUSEFABAD, S.L., ZARE, S., NOWZARI, F., ABBASPOUR, S., AKBARIZADEH, F., and Aliabadi, E., 2025. Mandibular bone defect healing using polylactic acid–nano-hydroxyapatite–gelatin scaffold loaded with hesperidin and dental pulp stem cells in rat. Tissue and Cell, 93, p.102700. https://doi.org/10.1016/j.tice.2024.102700
KIM, Y., KANG, B.J., KIM, W.H., YUN, H.S., and KWEON, O.K., 2018. Evaluation of mesenchymal stem cell sheets overexpressing BMP-7 in canine critical-sized bone defects. International journal of molecular sciences, 19(7), p.2073. https://doi.org/10.3390/ijms19072073
KIMELMAN, N.B., KALLAI, I., SHEYN, D., TAWACKOLI, W., GAZIT, Z., PELLED, G., and GAZIT, D., 2013. Real-time bioluminescence functional imaging for monitoring tissue formation and regeneration. Biological Aging: Methods and Protocols, pp.181-193. https://doi.org/10.1007/978-1-62703-556-9_14
KJALARSDÓTTIR, L., DÝRFJÖRD, A., DAGBJARTSSON, A., LAXDAL, E.H., ÖRLYGSSON, G., GÍSLASON, J., EINARSSON, J.M., Ng, C.H., and JONSSON JR, H., 2019. Bone remodeling effect of a chitosan and calcium phosphate-based composite. Regenerative biomaterials, 6(4), pp.241-247. https://doi.org/10.1093/rb/rbz009
KONG, D., SHI, Y., LIN, G., JIANG, B., and DU, J., 2020. Recent advance in evaluation methods for characterizing mechanical properties of bone. Archives of Computational Methods in Engineering, 27, pp.711-723.https://doi.org/10.1007/s11831-019-09322-2
KONTIZA, A., and KARTSONAKIS, I.A., 2024. Smart composite materials with self-healing properties: A review on design and applications. Polymers, 16(15), p.2115. https://doi.org/10.3390/polym16152115
KUDIYARASU, S., PERUMAL, M.K.K., RENUKA, R.R., and NATRAJAN, P.M., 2024. Chitosan composite with mesenchymal stem cells: Properties, mechanism, and its application in bone regeneration. International Journal of Biological Macromolecules, 275, p.133502. https://doi.org/10.1016/j.ijbiomac.2024.133502
KUMAR, A., SHARMA, K., and DIXIT, A.R., 2020. Carbon nanotube-and graphene-reinforced multiphase polymeric composites: review on their properties and applications. Journal of Materials Science, 55(7), pp.2682-2724. https://doi.org/10.1007/s10853-019-04196-y
KUMAR, R., SINGH, R., and HASHMI, M.S.J., 2022. Polymer-Ceramic composites: A state of art review and future applications. Advances in Materials and Processing Technologies, 8(1), pp.895-908. https://doi.org/10.1080/2374068X.2020.1835013
KUMARI, S., SINGH, D., SRIVASTAVA, P., SINGH, B.N., and MISHRA, A., 2022. Generation of graphene oxide and nano-bioglass based scaffold for bone tissue regeneration. Biomedical Materials, 17(6), p.065012. https://doi.org/10.1088/1748-605X/ac92b4
LEE, J.H., PARTHIBSN, P., JIN, G.Z., KNOWLES, J.C., and KIM, H.W., 2021. Materials roles for promoting angiogenesis in tissue regeneration. Progress in Materials Science, 117, p.100732. https://doi.org/10.1016/j.pmatsci.2020.100732
LI, F., YE, J., LIU, P., JIANG, J., and CHEN, X., 2025. An Overview on Bioactive Glasses for Bone Regeneration and Repair: Preparation, Reinforcement, and Applications. Tissue Engineering Part B: Reviews.https://doi.org/10.1089/ten.teb.2024.0272
LI, M., XIONG, P., YAN, F., LI, S., REN, C., YIN, Z., LI, A., LI, H., JI, X., ZHENG, Y., and CHENG, Y., 2018. An overview of graphene-based hydroxyapatite composites for orthopedic applications. Bioactive materials, 3(1), pp.1-18.https://doi.org/10.1016/j.bioactmat.2018.01.001
LI, Y., LIU, Y., LI, R., BAI, H., ZHU, Z., ZHU, L., ZHU, C., CHE, Z., LIU, H., WANG, J., and HUANG, L., 2021. Collagen-based biomaterials for bone tissue engineering. Materials & Design, 210, p.110049.https://doi.org/10.1016/j.matdes.2021.110049
LI, Y., YANG, Y., QING, Y.A., LI, R., TANG, X., GUO, D., and QIN, Y., 2020. Enhancing ZnO-NP antibacterial and osteogenesis properties in orthopedic applications: a review. International journal of nanomedicine, pp.6247-6262. doi: https://doi.org/10.2147/ijn.s262876
LIANG, W., LONG, H., ZHANG, H., BAI, J., JIANG, B., WANG, J., FU, L., MING, W., ZHAO, J., and ZENG, B., 2024. Bone scaffolds-based localized drugs delivery for osteosarcoma: current status and future perspective. Drug Delivery, 31(1), p.2391001. https://doi.org/10.1080/10717544.2024.2391001
LIANG, W., WU, X., DONG, Y., SHAO, R., CHEN, X., ZHOU, P., and XU, F., 2021. In vivo behavior of bioactive glass-based composites in animal models for bone regeneration. Biomaterials Science, 9(6), pp.1924-1944. https://doi.org/10.1039/D0BM01663B
LIU, H., CHEN, J., Qiao, S., and ZHANG, W., 2021. Carbon-based nanomaterials for bone and cartilage regeneration: a review. ACS Biomaterials Science & Engineering, 7(10), pp.4718-4735. https://doi.org/10.1021/acsbiomaterials.1c00759
LIU, H., LI, K., GUO, B., YUAN, Y., RUAN, Z., LONG, H., ZHU, J., ZHU, Y., and CHEN, C., 2024. Engineering an injectable gellan gum-based hydrogel with osteogenesis and angiogenesis for bone regeneration. Tissue and Cell, 86, p.102279. https://doi.org/10.1016/j.tice.2023.102279
LIU, Q., PENG, X., LIU, X., MOU, X., GUO, Y., YANG, L., CHEN, Y., ZHOU, Y., SHI, Z., YANG, Z., and CHEN, Z., 2023. Advances in the application of bone morphogenetic proteins and their derived peptides in bone defect repair. Composites Part B: Engineering, 262, p.110805. https://doi.org/10.1016/j.compositesb.2023.110805
LIU, S., LI, Z., WANG, Q., HAN, J., WANG, W., LI, S., LIU, H., GUO, S., ZHANG, J., GE, K., and ZHOU, G., 2021. Graphene oxide/chitosan/hydroxyapatite composite membranes enhance osteoblast adhesion and guided bone regeneration. ACS Applied Bio Materials, 4(11), pp.8049-8059.https://doi.org/10.1021/acsabm.1c00967
LIU, X., and WANG, Z., 2023. Chitosan-calcium carbonate scaffold with high mineral content and hierarchical structure for bone regeneration. Smart Materials in Medicine, 4, pp.552-561. https://doi.org/10.1016/j.smaim.2023.04.004
LV, Y., WANG, Z., WEI, Y., SUN, C., CHEN, M., QIN, R., QIN, H., MA, C., REN, Y., and WANG, S., 2025. Thermoresponsive dual-network chitosan-based hydrogels with demineralized bone matrix for controlled release of rhBMP9 in the treatment of femoral head osteonecrosis. Carbohydrate Polymers, 352, p.123197.https://doi.org/10.1016/j.carbpol.2024.123197
LYONS, J.G., PLANTZ, M.A., HSU, W.K., HSU, E.L., and MINARDI, S., 2020. Nanostructured biomaterials for bone regeneration. Frontiers in Bioengineering and Biotechnology, 8, p.922. https://doi.org/10.3389/fbioe.2020.00922
MARESCA, J.A., DEMEL, D.C., WAGNER, G.A., HAASE, C., and GEIBEL, J.P., 2023. Three-dimensional bioprinting applications for bone tissue engineering. Cells, 12(9), p.1230. https://doi.org/10.3390/cells12091230
MI, B., XIONG, Y., ZHAO, Y., LIN, Z., LU, L., LIU, G., and ZHAO, Y., 2024. Metal–Organic Framework‐Integrated Composites for Bone Tissue Regeneration. Advanced Functional Materials, 34(8), p.2308656.https://doi.org/10.1002/adfm.202308656
MIN, K.H., KIM, D.H., KIM, K.H., SEO, J.H., and Pack, S.P., 2024. Biomimetic scaffolds of calcium-based materials for bone regeneration. Biomimetics, 9(9), p.511. https://doi.org/10.3390/biomimetics9090511
MIRANDA, G., ARAÚJO, A., BARTOLOMEU, F., BUCIUMEANU, M., CARVALHO, O., SOUZA, J.C.M., SILVA, F.S., and HENRIQUES, B., 2016. Design of Ti6Al4V-HA composites produced by hot pressing for biomedical applications. Materials & Design, 108, pp.488-493. https://doi.org/10.1016/j.matdes.2016.07.023
MO, X., ZHANG, D., LIU, K., ZHAO, X., LI, X., and WANG, W., 2023. Nano-hydroxyapatite composite scaffolds loaded with bioactive factors and drugs for bone tissue engineering. International Journal of Molecular Sciences, 24(2), p.1291. https://doi.org/10.3390/ijms24021291
MOHAMMED, F.M., ALKATTAN, L.M., ISMAIL, H.K., and SHAREEF, A.M., 2023. Evaluation of The Role of Hydroxyapatite Nano Gel as Filling Materials for Improving The Healing of Repaired Tibial Bone Defect In Dogs. Egyptian Journal of Veterinary Sciences, 54(1), pp.1-11. https://doi.org/10.21608/ejvs.2022.148249.1360
MOHAMMED, F.M., LM, A., SHAREEF, A.M., and MG, T., 2023. Evaluation the effect of high and low viscosity Nano-hydroxylapatite gel in repairing of an induced critical-size tibial bone defect in dogs: Radiolographical study. Journal of Applied Veterinary Sciences, 8(3), pp.105-110. https://dx.doi.org/10.21608/javs.2023.215990.1239
MONIA, T., and RIDHA, B.C., 2024. Polymer-ceramic composites for bone challenging applications: Materials and manufacturing processes. Journal of Thermoplastic Composite Materials, 37(4), pp.1540-1557. https://doi.org/10.1177/08927057231190066
MOTAMENI, A., ÇARDAKLI, İ.S., GÜRBÜZ, R., ALSHEMARY, A.Z., RAZAVI, M., and FARUKOĞLU, Ö.C., 2024. Bioglass-polymer composite scaffolds for bone tissue regeneration: a review of current trends. International Journal of Polymeric Materials and Polymeric Biomaterials, 73(7), pp.600- 619. https://doi.org/10.1080/00914037.2023.2186864
MURUGAN, S., and PARCHA, S.R., 2021. Fabrication techniques involved in developing the composite scaffolds PCL/HA nanoparticles for bone tissue engineering applications. Journal of Materials Science: Materials in Medicine, 32(8), p.93. https://doi.org/10.1007/s10856-021-06564-0
NABEEL, M., ABU-SEIDA, A.M., ELGENDY, A.A., and TAWFIK, H.M., 2024. Biocompatibility of mineral trioxide aggregate and biodentine as root-end filling materials: an in vivo study. Scientific Reports, 14(1), p.3568.https://doi.org/10.1038/s41598-024-53872-w
NAYAK, A.K., MAITY, M., BARIK, H., BEHERA, S.S., DHARA, A.K., and HASNAIN, M.S., 2024. Bioceramic materials in bone-implantable drug delivery systems: A review. Journal of Drug Delivery Science and Technology, p.105524.https://doi.org/10.1016/j.jddst.2024.105524
NEDORUBOVA, I.A., BUKHAROVA, T.B., MOKROUSOVA, V.O., KHVOROSTINA, M.A., VASILYEV, A.V., NEDORUBOV, A.A., GRIGORIEV, T.E., ZAGOSKIN, Y.D., CHVALUN, S.N., KUTSEV, S.I., and GOLDSHTEIN, D.V., 2022. Comparative efficiency of gene-activated matrices based on chitosan hydrogel and PRP impregnated with BMP2 polyplexes for bone regeneration. International Journal of Molecular Sciences, 23(23), p.14720.https://doi.org/10.3390/ijms232314720
NILSSON, M., ZHENG, M.H., and TÄGIL, M., 2013. The composite of hydroxyapatite and calcium sulphate: a review of preclinical evaluation and clinical applications. Expert review of medical devices, 10(5), pp.675-684.https://doi.org/10.1586/17434440.2013.827529
NIU, Y., DU, T., and LIU, Y., 2023. Biomechanical characteristics and analysis approaches of bone and bone substitute materials. Journal of Functional Biomaterials, 14(4), p.212. https://doi.org/10.3390/jfb14040212
NOORI, A., ASHRAFI, S.J., VAEZ-GHAEMI, R., HATAMIAN-ZAREMI, A., and WEBSTER, T.J., 2017. A review of fibrin and fibrin composites for bone tissue engineering. International journal of nanomedicine, pp.4937-4961. https://doi.org/10.2147/IJN.S124671
NWUZOR, I.C., OGAH, A.O., EZIKA, A.C., MADU, I.O., and IBENTA, M.E., 2025. Hybrid polymeric materials for potential applications in bone regeneration. In Hybrid Polymeric Systems for Biomedical Applications (pp. 53-89). Woodhead Publishing. https://doi.org/10.1016/B978-0-443-15564-2.00004-4
OKASHA, H., ABU‐SEIDA, A.M., HASHEM, A.A., EL ASHRY, S.H., and NAGY, M.M., 2022. Inflammatory response and immunohistochemical characterization of experimental calcium silicate‐based perforation repair material. International Journal of Experimental Pathology, 103(4), pp.156-163.https://doi.org/10.1111/iep.12439
OLIVEIRA, É.R., NIE, L., PODSTAWCZYK, D., ALLAHBAKHSG, A., RATNAYAKE, J., BRASIL, D.L., and SHAVANDI, A., 2021. Advances in growth factor delivery for bone tissue engineering. International journal of molecular sciences, 22(2), p.903. https://doi.org/10.3390/ijms22020903
OLIVER-URRUTIA, C., KASHIMBETOVA, A., SlÁMEČKA, K., CASAS-LUNA, M., MATULA, J., KOLEDOVA, Z.S., KAISER, J., ČELKO, L., and MONTUFAR, E.B., 2025. Porous titanium/hydroxyapatite interpenetrating phase composites with optimal mechanical and biological properties for personalized bone repair. Biomaterials Advances, 166, p.214079. https://doi.org/10.1016/j.bioadv.2024.214079
OMIDIAN, H., and BABANEJAD, N., 2024. Bioinspired Polymers: Bridging Nature’s Ingenuity with Synthetic Innovation. Macromol, 4(2), pp.190-212. https://doi.org/10.3390/macromol4020010
OMIDIAN, H., and CHOWDHURY, S.D., 2023. Advancements and applications of injectable hydrogel composites in biomedical research and therapy. Gels, 9(7), p.533. https://doi.org/10.3390/gels9070533
PABLOS, J.L., LOZANO, D., MANZANO, M., and VALLET-REGÍ, M., 2024. Regenerative medicine: Hydrogels and mesoporous silica nanoparticles. Materials Today Bio, p.101342. https://doi.org/10.1016/j.mtbio.2024.101342
PARIDA, S.K., KULLU, S., HOTA, S., and MISHRA, S., 2024. Synthesis and Processing Techniques of Polymer Composites. In Polymer Composites: Fundamentals and Applications (pp. 39-66). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-2075-0
PATEL, D., and WAIRKAR, S., 2023. Bone regeneration in osteoporosis: opportunities and challenges. Drug Delivery and Translational Research, 13(2), pp.419-432. https://doi.org/10.1007/s13346-022-01222-6
PETER, M., GANESH, N., SELVAMURUGAN, N., NAIR, S.V., FURUIKE, T., TAMURA, H., and JAYAKUMAR, R., 2010. Preparation and characterization of chitosan–gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydrate polymers, 80(3), pp.687-694. https://doi.org/10.1016/j.carbpol.2009.11.050
PIRES, J.L.D.S., DE CARVALHO, J.J., PEREIRA, M.J.D.S., BRUM, I.D.S., NASCIMENTO, A.L.R., DOS SANTOS, P.G.P., FRIGO, L., and FISCHER, R.G., 2021. Repair of critical size bone defects using synthetic hydroxyapatite or xenograft with or without the bone marrow mononuclear fraction: A histomorphometric and immunohistochemical study in rat calvaria. Materials, 14(11), p.2854. https://doi.org/10.3390/ma14112854
PODGORBUNSKY, A.B., IMSHINETSKIY, I.M., MASHTALYAR, D.V., SIDOROVA, M.V., GNEDENKOV, A.S., SINEBRYUKHOV, S.L., and GNEDENKOV, S.V., 2025. Bioresorbable composites based on magnesium and hydroxyapatite for use in bone tissue engineering: Focus on controlling and minimizing corrosion activity. Ceramics International, 51(1), pp.423-436.https://doi.org/10.1016/j.ceramint.2024.11.016
POP, T.S., MIRON, A.D.T., POP, A.M., BRINZANIUC, K., and TRAMBITAS, C., 2019. Magnetic Resonance Imaging Assessment of Bone Regeneration in Osseous Defects Filled with Different Biomaterials. MATERIALE PLASTICE, 56(1), p.235. https://doi.org/10.37358/MP.19.1.5158
POUNTOS, I., GEORGOULI, T., BIRD, H., KONTAKIS, G., and GIANNOUDIS, P.V., 2011. The effect of antibiotics on bone healing: current evidence. Expert opinion on drug safety, 10(6), pp.935-945. https://doi.org/10.1517/14740338.2011.589833
PULINGAM, T., APPATURI, J.N., PARUMASIVAM, T., AHMAD, A., and SUDESH, K., 2022. Biomedical applications of polyhydroxyalkanoate in tissue engineering. Polymers, 14(11), p.2141.https://doi.org/10.3390/polym14112141
QI, X., LIU, Y., YIN, X., ZHAO, R., ZHANG, W., CAO, J., WANG, W., and JIA, W., 2023. Surface-based modified 3D-printed BG/GO scaffolds promote bone defect repair through bone immunomodulation. Composites Part B: Engineering, 257, p.11067. https://doi.org/10.1016/j.compositesb.2023.110673
RIBEIRO, I.Í.D.A., ALMEIDA, R.D.S., SILVA, A.M.G.B.D., BARBOSA, A.D.A., ROSSI, A.M., MIGUEL, F.B., and ROSA, F.P., 2024. Biological evaluation of critical bone defect regeneration using hydroxyapatite/alginate composite granules. Acta Cirúrgica Brasileira, 39, p.e392824. https://doi.org/10.1590/acb392824
ROMAGNOLI, C., D’ASTA, F., and BRANDI, M.L., 2014. Drug delivery using composite scaffolds in the context of bone tissue engineering. Clinical cases in mineral and bone metabolism, 10(3), p.155. https://pmc.ncbi.nlm.nih.gov/articles/PMC3917575
ROWLANDS, A.S., LIM, S.A., MARTIN, D., and COOPER-WHITE, J.J., 2007. Polyurethane/poly (lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation. Biomaterials, 28(12), pp.2109-2121. https://doi.org/10.1016/j.biomaterials.2006.12.032
SAFSRI, B., DAVARAN, S., and AGHANEJAD, A., 2021. Osteogenic potential of the growth factors and bioactive molecules in bone regeneration. International journal of biological macromolecules, 175, pp.544-557. https://doi.org/10.1016/j.ijbiomac.2021.02.052
SAGI, H.C., and PATZAKIS, M.J., 2021. Evolution in the acute management of open fracture treatment? Part 1. Journal of Orthopaedic Trauma, 35(9), pp.449-456. https://doi.org/10.1097/BOT.0000000000002094
SALERNO, A., CESARELLI, G., PEDRAM, P., and NETTI, P.A., 2019. Modular strategies to build cell-free and cell-laden scaffolds towards bioengineered tissues and organs. Journal of Clinical Medicine, 8(11), p.1816. https://doi.org/10.3390/jcm8111816
SALMON, P.L., and SASOV, A.Y., 2007. Application of nano-CT and high-resolution micro-CT to study bone quality and ultrastructure, scaffold biomaterials and vascular networks. In Advanced bioimaging technologies in assessment of the quality of bone and scaffold materials: techniques and applications (pp. 323-331). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-45456-4_19
SATHIYA, K., GANESAMOORTHI, S., MOHAN, S., SHANMUGAVADIVU, A., and SELVAMURUGAN, N., 2024. Natural polymers-based surface engineering of bone scaffolds–A review. International Journal of Biological Macromolecules, p.136840. https://doi.org/10.1016/j.ijbiomac.2024.136840
SEIFI, S., SHAMLOO, A., BARZOKI, A.K., BAKHTIARI, M.A., ZARE, S., CHERAGHI, F., and PEYROVAN, A., 2024. Engineering biomimetic scaffolds for bone regeneration: Chitosan/alginate/polyvinyl alcohol-based double-network hydrogels with carbon nanomaterials. Carbohydrate Polymers, 339, p.122232. https://doi.org/10.1016/j.carbpol.2024.122232
SHAH, F.A., THOMSEN, P., and PALMQUIST, A., 2019. Osseointegration and current interpretations of the bone-implant interface. Acta biomaterialia, 84, pp.1-15. https://doi.org/10.1016/j.actbio.2018.11.018
SHAHIN-SHAMSABADI, A., HASHEMI, A., TAHRIRI, M., BASTAMI, F., SALEHI, M., and ABBAS, F.M., 2018. Mechanical, material, and biological study of a PCL/bioactive glass bone scaffold: Importance of viscoelasticity. Materials Science and Engineering: C, 90, pp.280-288.https://doi.org/10.1016/j.msec.2018.04.080
SHI, C., YUAN, Z., HAN, F., ZHU, C., and LI, B., 2016. Polymeric biomaterials for bone regeneration. Annals of Joint, 1(9). https://doi.org/10.21037/AOJ.2016.11.02
SHI, Y., WANG, L., ABUDUEHEMAN, W., YANG, J., and LIN, C., 2023. Magnesium calcium alloys/mineralized collagen composites mediating macrophage polarization to promote bone repair. https://doi.org/10.21203/rs.3.rs-3690859/v1
SOUSA, A.C., ALVITES, R., LOPES, B., SOUSA, P., MOREIRA, A., COELHO, A., RÊMA, A., BISCAIA, S., CORDEIRO, R., FARIA, F., and DA SILVA, G.F., 2025. Hybrid scaffolds for bone tissue engineering: Integration of composites and bioactive hydrogels loaded with hDPSCs. Biomaterials Advances, 166, p.214042. https://doi.org/10.1016/j.bioadv.2024.214042
SOUZA, J.R.D., KUKULKA, E.C., KITO, L.T., DE Sá ALVES, M., DOS SAATOS, V.R., TRICHÊS, E.S., VASCONCELLOS, L.M., THIM, G.P., CAMPOS, T.M., and BORGES, A.L., 2024. Electrospun Polylactic Acid/Polyethylene Glycol/Silicate‐Chlorinated Bioactive Glass Composite Scaffolds for Potential Bone Regeneration. Polymers for Advanced Technologies, 35(11), p.e6627. https://doi.org/10.1002/pat.6627
SREENA, R., RAMAN, G., MANIVASAGAM, G., and NATHANAEL, A.J., 2024. Bioactive Glass-Polymer Nanocomposites: A comprehensive Review on Unveiling its Biomedical Applications. Journal of Materials Chemistry B. https://doi.org/10.1039/d4tb01525h
STAHL, A., and YANG, Y.P., 2021. Regenerative approaches for the treatment of large bone defects. Tissue Engineering Part B: Reviews, 27(6), pp.539-547.https://doi.org/10.1089/ten.teb.2020.0281
SU, D., WU, Y., YANG, S., Ma, D., ZHANG, H., MA, Y., LIU, J., WANG, C., LIU, H., and YANG, X., 2024. Dual-energy computed tomography and micro-computed tomography for assessing bone regeneration in a rabbit tibia model. Scientific Reports, 14(1), p.5967. https://doi.org/10.1038/s41598-024-56199-8
SUBRAMANIYAN, M., KARUPPAN, S., HELAILI, S., and AHMAD, I., 2024. Structural, mechanical, and in-vitro characterization of hydroxyapatite loaded PLA composites. Journal of Molecular Structure, 1306, p.137862. https://doi.org/10.1016/j.molstruc.2024.137862
SUBUKI, I., ADNAN, N., and SHARUDIN, R.W., 2018, November. Biodegradable scaffold of natural polymer and hydroxyapatite for bone tissue engineering: A short review. In AIP conference proceedings (Vol. 2031, No. 1). AIP Publishing. https://doi.org/10.1063/1.5066975
SUMITHRA, G., REDDY, R.N., KUMAR, G.D., OJHA, S., JAYACHANDRA, G., and RAGHAVENDRA, G., 2023. Review on composite classification, manufacturing, and applications. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.04.637
SZWED-GEORGIOU, A., PLOCIŃSKI, P., KUPIKOWSKA-STOBBA, B., URBANIAK, M.M., RUSEK-WALA, P., SZUSTAKIEWICZ, K., PISZKO, P., KRUPA, A., BIERNAT, M., GAZIŃSKA, M., and KASPRZAK, M., 2023. Bioactive materials for bone regeneration: biomolecules and delivery systems. ACS Biomaterials Science & Engineering, 9(9), pp.5222-5254. https://doi.org/10.1021/acsbiomaterials.3c00609
TALAAT, S., HASHEM, A.A., ABU-SEIDA, A., ABDEL WAHED, A., and ABDEL AZIZ, T.M., 2024. Regenerative potential of mesoporous silica nanoparticles scaffold on dental pulp and root maturation in immature dog’s teeth: a histologic and radiographic study. BMC Oral Health, 24(1), p.817.https://doi.org/10.1186/s12903-024-04368-6
TANG, S., SHEN, Y., JIANG, L., and ZHANG, Y., 2024. Surface Modification of Nano-Hydroxyapatite/Polymer Composite for Bone Tissue Repair Applications: A Review. Polymers, 16(9), p.1263. https://doi.org/10.3390/polym16091263
TAVONI, M., DAPPORTO, M., TAMPIERI, A., and SPRIO, S., 2021. Bioactive calcium phosphate-based composites for bone regeneration. Journal of Composites Science, 5(9), p.227. https://doi.org/10.3390/jcs5090227
TAY, F.R. 2014. Bioactivity of mineral trioxide aggregate and mechanism of action. Mineral trioxide aggregates in dentistry: from preparation to application, pp.61-85. https://doi.org/10.1007/978-3-642-55157-4_4
TODD, E.A., MIRSKY, N.A., SILVA, B.L.G., SHINDE, A.R., ARAKELIANS, A.R., NAYAK, V.V., MARCANTONIO, R.A.C., GUPTA, N., WITEK, L., and COELHO, P.G., 2024. Functional Scaffolds for Bone Tissue Regeneration: A Comprehensive Review of Materials, Methods, and Future Directions. Journal of Functional Biomaterials, 15(10), p.280. https://doi.org/10.3390/jfb15100280
VAN ERK, M., LANAO, R.F., CALON, N., TROPPER, J., LEEUWENBURGH, S.C., and VAN GOOR, H., 2024. Cellular viability of fibroblasts, osteoblasts and osteoclasts in response to bone adhesive alendronate-functionalized poly (2-oxazoline). Polymer Testing, 131, p.108344. https://doi.org/10.1016/j.polymertesting.2024.108344
VAN HOUDT, C.I., KOOLEN, M.K., LOPEZ‐PEREZ, P.M., ULRICH, D.J., JANSEN, J.A., LEEUWENBURGH, S.C., WEINANS, H.H., and VAN DEN BEUCKEN, J.J., 2021. Regenerating critical size rat segmental bone defects with a self‐healing hybrid nanocomposite hydrogel: effect of bone condition and BMP‐2 incorporation. Macromolecular Bioscience, 21(8), p.2100088. https://doi.org/10.1002/mabi.202100088
VIA, G.G., and JERELE, J.L., 2023. Bone fluorescence and fluorescence-guided debridement in orthopaedic surgery: Current evidence and practice. Journal of Orthopaedic Reports, 2(1), p.100120. https://doi.org/10.1016/j.jorep.2022.100120
VIJAYALEKHA, A., ANANDASADAGOPAN, S.K., and PANDURANGAN, A.K., 2023. An overview of collagen-based composite scaffold for bone tissue engineering. Applied Biochemistry and Biotechnology, 195(7), pp.4617-4636. https://doi.org/10.1007/s12010-023-04318-y
WANG, J., WANG, X., LIANG, Z., LAN, W., WEI, Y., HU, Y., WANG, L., LEI, Q., and HUANG, D., 2023. Injectable antibacterial Ag-HA/GelMA hydrogel for bone tissue engineering. Frontiers in Bioengineering and Biotechnology, 11, p.1219460. https://doi.org/10.3389/fbioe.2023.1219460
WEI, H., CUI, J., LIN, K., XIE, J., and WANG, X., 2022. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone research, 10(1), p.17.https://doi.org/10.1038/s41413-021-00180-y
WEI, J., CHEN, X., XU, Y., SHI, L., ZHANG, M., NIE, M., and LIU, X., 2024. Significance and considerations of establishing standardized critical values for critical size defects in animal models of bone tissue regeneration. Heliyon, 10(13). https://doi.org/10.1016/j.heliyon.2024.e33768
WEI, S., WANG, Y., SUN, Y., GONG, L., DAI, X., MENG, H., XU, W., MA, J., HU, Q., MA, X., and PENG, J., 2023. Biodegradable silk fibroin scaffold doped with mineralized collagen induces bone regeneration in rat cranial defects. International Journal of Biological Macromolecules, 235, p.123861. https://doi.org/10.1016/j.ijbiomac.2023.123861
WUBNEH, A., TSEKOURA, E.K., AYRANCI, C., and ULUDAĞ, H., 2018. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomaterialia, 80, pp.1-30. https://doi.org/10.1016/j.actbio.2018.09.031
XING, J., and LIU, S., 2024. Application of loaded graphene oxide biomaterials in the repair and treatment of bone defects: a review. Bone & Joint Research, 13(12), p.725. https://doi.org/10.1302/2046-3758.1312.BJR-2024-0048.R1
XING, Y., QIU, L., LIU, D., DAI, S., and SHEU, C.L., 2023. The role of smart polymeric biomaterials in bone regeneration: a review. Frontiers in Bioengineering and Biotechnology, 11, p.1240861. https://doi.org/10.3389/fbioe.2023.1240861
XU, N., LU, D., QIANG, L., LIU, Y., YIN, D., WANG, Z., LUO, Y., YANG, C., MA, Z., MA, H., and WANG, J., 2023. 3D-printed composite bioceramic scaffolds for bone and cartilage integrated regeneration. ACS omega, 8(41), pp.37918-37926. https://doi.org/10.1021/acsomega.3c03284
XUE, N., DING, X., HUANG, R., JIANG, R., HUANG, H., PAN, X., MIN, W., CHEN, J., DUAN, J.A., LIU, P., and WANG, Y., 2022. Bone tissue engineering in the treatment of bone defects. Pharmaceuticals, 15(7), p.879. https://doi.org/10.3390/ph15070879
YANG, J., 2018. Progress of bioceramic and bioglass bone scaffolds for load-bearing applications. Orthopedic Biomaterials: Progress in Biology, Manufacturing, and Industry Perspectives, pp.453-486. https://doi.org/10.1007/978-3-319-89542-0
YAO, S., XU, Y., ZHOU, Y., SHAO, C., LIU, Z., JIN, B., ZHAO, R., CAO, H., PAN, H., and TANG, R., 2019. Calcium phosphate nanocluster-loaded injectable hydrogel for bone regeneration. ACS Applied Bio Materials, 2(10), pp.4408-4417. https://doi.org/10.1021/acsabm.9b00270
YE, J., LIU, N., LI, Z., LIU, L., ZHENG, M., WEN, X., WANG, N., XU, Y., SUN, B., and ZHOU, Q., 2023. Injectable, hierarchically degraded bioactive scaffold for bone regeneration. ACS applied materials & interfaces, 15 (9), pp.11458-11473. https://doi.org/10.1021/acsami.2c18824
YIN, C., DENG, M., YU, J., CHEN, Y., ZHENG, K., HUANG, Y., DENG, X., TIAN, Y., MA, Y., ZENG, B., and GUO, X., 2024. An Andrias davidianus derived composite hydrogel with enhanced antibacterial and bone repair properties for osteomyelitis treatment. Scientific Reports, 14(1), p.24626. https://doi.org/10.1038/s41598-024-75997-8
YUAN, H., FERNANDES, H., HABIBOVIC, P., DE BOER, J., BARRADAS, A.M., DE RUITER, A., WALSH, W.R., VAN BLITTERSWIJK, C.A., and DE BRUIJN, J.D., 2010. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proceedings of the National Academy of Sciences, 107(31), pp.13614-13619. https://doi.org/10.1073/pnas.1003600107
ZANG, S., ZHU, L., LUO, K., MU, R., CHEN, F., WEI, X., YAN, X., HAN, B., SHI, X., WANG, Q., and JIN, L., 2017. Chitosan composite scaffold combined with bone marrow-derived mesenchymal stem cells for bone regeneration: in vitro and in vivo evaluation. Oncotarget, 8(67), p.110890. https://doi.org/10.18632/oncotarget.22917
ZERANKES, M.M., BAKHSHI, R., and ALIZADEH, R., 2022. Polymer/metal composite 3D porous bone tissue engineering scaffolds fabricated by additive manufacturing techniques: A review. Bioprinting, 25, p.e00191. https://doi.org/10.1016/j.bprint.2022.e00191
ZHANG, Q., ZHOU, J., ZHI, P., LIU, L., LIU, C., FANG, A., and ZHANG, Q., 2023. 3D printing method for bone tissue engineering scaffold. Medicine in Novel Technology and Devices, 17, p.100205. https://doi.org/10.1016/j.medntd.2022.100205
ZHANG, X., XIA, Y., XU, J., KANG, J., LI, X., LI, Y., YAN, W., TIAN, F., ZHAO, B., LI, B., and WANG, C., 2024. Cell-free chitosan/silk fibroin/bioactive glass scaffolds with radial pore for in situ inductive regeneration of critical-size bone defects. Carbohydrate Polymers, 332, p.121945. https://doi.org/10.1016/j.carbpol.2024.121945