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ABSTRACT 
 

Critical-sized bone defects (CSBDs) are a significant issue in reconstructive 

surgery, demanding the development of improved biomaterials to promote bone 

regeneration. Composite materials have emerged as attractive alternatives because 

of their ability to approximate native bone's hierarchical structure while also 

providing specific mechanical and biological qualities. IN this narrative review, a 

complete discussion of material selection for composite construction including bio 

ceramics, polymers, and bioactive agents were summarized. this review determines 

the most recent fabrication techniques used in composite synthesis, such as solvent 

casting, electrospinning, freeze-drying, and 3D printing, focusing on their effects 

on structural integrity and bioactivity.  Details of the most used composites were 

also summarized. Additionally, different bone healing assessment approaches were 

explored to determine the efficacy of these composites in promoting bone 

regeneration. Over all the composites containing biomaterials like natural bone, 

such as hydroxyapatite and collagen, are the most widely used composites, due to 

their excellent osteoconductivity, biocompatibility, and mechanical 

properties.Fabrication methods are tailored to the desired composite properties, 

electrospinning is the choice for the precise fabrication of nanofibrous composites 

with high surface area. While Sol-gel processing was used if high-purity, bioactive 

ceramic-polymer composites are required. Additionally freeze-drying method was 

used if a highly porous composite structure was required for rapid vascularization. 

Micro-CT is the most reliable technique for non-destructively analyzing the 

structure, degradation, and osseointegration of composites using high-resolution 

imaging. In conclusion Composites are expected to provide an effective long-term 

solution for CSBD and offer insight that may inform future human bone 

regeneration strategies and veterinary regenerative therapies. 
 

 ــــــــــــــــــــــــــــــــــــــــ ـ

Keywords: Biomaterials, Bone composite, Bone healing, Fabrication, 

Regenerative medicine. 
 

 

Review Article: 

DOI: 10.21608/javs.2025.359578.1535 

Received : 18 February, 2025. 

Accepted: 22 March, 2025.  

Published in April, 2025. 

This is an open access article under the term 

of the Creative Commons Attribution 4.0 

(CC-BY) International License . To view a 

copy of this license, visit: 

http://creativecommons.org/licenses/by/4.0/ 

 

 

 

 

 

 

 

 

 

 

 

 
 

J. Appl. Vet. Sci., 10(2):110-127. 

 

INTRODUCTION 
Bone composite is a biomaterial system used in 

bone healing and tissue engineering, mimicking Host 

bone tissue's structural and functional characteristics. It 

provides mechanical strength, osteoconductive, 

osteoinductive and metabolic cues, stimulating bone 

remodeling, angiogenesis, and defect healing (Geng et 

al., 2021). It regulates Bone tissue growth, promotes the 

healing process and restores function (Pires et al., 

2021). These composites contain inorganic and organic 

components, such as natural or synthetic polymers, 

ceramics, and metals (Guo et al., 2023). They enhance 

osteointegration in bone-implant systems (Fraile-

Martínez et al., 2021).  
 

Composite biomaterials play a crucial role in 

bone healing by promoting the differentiation of 

mesenchymal stem cells through gene-enhancing drugs, 

such as Bone Morphogenetic Proteins (BMPs) and 

Vascular Endothelial Growth Factor (VEGF), which 

stimulate osteogenesis and angiogenesis (Kudiyarasu 
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et al., 2024). Also, composites distribute growth factors 

to injured bone regions, expediting bone regeneration 

and reducing inflammation (Nayak et al., 2024). 
  

Composites are indicated for animals with 

metabolic bone illnesses, such as osteoporosis, as they 

promote cellular migration and mineralization to mend 

huge defects (Patel and Wairkar, 2023). Using 3D 

printing technology, composites are made to fit the 

animal's mechanical and anatomical requirements for 

the best possible recovery (Xu et al., 2023), They are 

indicated for non-union fractures and osteomyelitis 

(Yin et al., 2024). Also, they are used in craniofacial 

reconstruction (Atiyah and LM, 2024). Composites 

also support the integration and stabilization of metal 

implants during orthopedic surgeries (Abd-Elaziem et 

al., 2024). They are utilized in joint reconstruction to 

address osteochondral abnormalities (Xu et al., 2023), 

periodontal disease (Balaji et al., 2020, Nabeel et al., 

2024), endodontics (Talaat et al., 2024), spinal fusion, 

orthopedic surgeries (Gloria et al., 2017) and in the 

healing of tendons and ligaments (D'Amora et al., 

2017). 

 

A CSBD is a bone defect larger than the host 

tissue's regenerative capacity that Lacks ability to heal 

spontaneously   (Kim et al., 2018; Mohammed et al., 

2023). CSBD can be caused by high-energy trauma, 

open fractures that do not heal spontaneously (Sagi and 

Patzakis, 2021), surgical resection (Liang et al., 2024), 

particularly for malignant bone tumor removal (Bläsius 

et al., 2022), osteomyelitis (Bezstarosti et al., 2021), 

congenital defects, bone diseases, bone cysts, metabolic 

bone diseases, chronic conditions like rheumatoid 

arthritis, genetic factors, and disuse osteoporosis (Stahl 

and Yang , 2021; Wei et al., 2024). 

 

Nutritional deficiencies and endocrine 

disorders, such as hyperparathyroidism, Cushing's 

syndrome, and hypothyroidism, can weaken bones and 

increase the risk of CSBDs. Ischemic bone lesions, 

necrosis, and severe deformities can also lead to CSBDs 

and post-surgical complications (Dahl and Morrison, 

2021). Long-term use of corticosteroids, radiation 

exposure, improper fixation or rejection, and 

osteochondrosis can all contribute to bone deformities 

and osteoporosis (Chotiyarnwong and McCloskey, 

2020). Excessive physical activities and overuse in 

performance animals can lead to traction or tension 

fractures, which can become serious defects if not 

addressed promptly (Xue et al., 2022). Biocompatibility 

is crucial for bone composite materials, preventing 

immune responses during implantation and promoting 

safe body integration (Nabeel et al., 2024). It prevents 

adverse effects like inflammation, toxicity, or rejection, 

promoting natural healing and bone structure restoration 

(Abdelaziz et al., 2023). 

Bone composites' osteoconductivity is crucial 

for bone regeneration, as it facilitates the adhesion, 

proliferation, and migration of osteoblasts from the 

surrounding bone tissue, periosteum, bone marrow, and 

vascularized regions to the implanted composite 

material or the bone defect site, accelerating repair and 

guiding the formation of new bone tissue. 

Osteoinductivity is a composite material's ability to 

stimulate stem cell differentiation into osteoblasts 

(Kazimierczak and Przekora, 2020). Osteointegration 

is the composite material's ability to bond with native 

bone tissue, ensuring seamless integration and long-

term support for the healing bone, crucial for successful 

bone injury healing, bone remodeling, and function 

restoration at the injured site (Aykora and Uzun, 2024). 

Bone composites' mechanical strength and load-bearing 

capacity are crucial, especially in weight-bearing 

regions (Yang, 2018). 

 

Bone composites require controlled 

degradation and bio-resorption to minimize surgical 

removal and facilitate natural bone regeneration 

(Barbieri et al., 2013). Failure or rapid degradation 

could compromise healing and implant failure (Kamil, 

2022). A durable composite material is crucial for 

successful bone defect repair (Shen and Qhobosheane, 

2020). Bone composites' porosity and interconnectivity 

are crucial for vascularization and cell migration, 

facilitating the formation of new blood vessels and 

nutrient-rich bone tissue, especially in large defects 

where poor vascularization or insufficient cellular 

infiltration hinders healing (Abbasi et al., 2020). 

Biodegradability in composite materials keeps foreign 

materials from accumulating at implant sites; these 

materials degrade into non-toxic byproducts, which the 

body can safely absorb or eliminate, resulting in smooth 

and efficient healing (Subuki et al., 2018). 

 

Bioactive molecules like growth factors, 

cytokines, or antibiotics as bone composites loaded with 

antibiotics release medication locally, preserving 

sterility, controlling excessive inflammation, enhancing 

osteoblast function, and preventing systemic side 

effects (Pountos et al., 2011). growth factors and 

cytokines enhancing bone healing by stimulating 

cellular responses, accelerating regeneration, reducing 

infection risks, and enhancing bone tissue repair 

(Szwed-Georgiou et al., 2023). Bone composites 

promote angiogenesis, promoting the formation of new 

blood vessels around implants to ensure adequate 

oxygen and nutrients for regenerating bone tissue (Lee 

et al., 2021). Advanced bone composites incorporate 

multi-functional properties like antimicrobial, electrical 

conductivity, and drug delivery systems to reduce 

infection risks, stimulate bone growth, and deliver 

therapeutic agents directly to injury sites, improving 

healing and reducing complications (Todd et al., 2024). 
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Bone composites are designed to support 

healing in diverse anatomical locations by allowing the 

material to adapt to different types of bone tissue, such 

as cortical or cancellous bone (Zhu et al., 2021). Bone 

composites require cellular compatibility and support to 

promote osteoblasts, osteoclasts, and mesenchymal 

stem cells (MSCs) for bone healing (Ielo et al., 2022). 

Nanostructured materials improve bone composites' 

mechanical and biological properties by improving cell 

attachment surface area, mimicking bone 

microarchitecture (Lyons et al., 2020), and minimizing 

residual stress during degradation or mechanical 

loading (Huang et al., 2023). 

 

Classification of bone composites  
Bone composites are classified based on their 

composition, structure, and purpose of applications, 

especially in bone healing and tissue engineering. 

Advanced classification includes material design, 

biological interaction, mechanical properties, and 

bioactive additives. This detailed classification allows 

for the selection of optimal materials and methods 

tailored to specific clinical needs and applications (Xue 

et al., 2022). 

 

Classification based on material design and 

functional integration includes multiple composite 

types. Multi-phase composites integrate various 

components such as ceramics, polymers, and metals, 

with each material fulfilling distinct roles (Bhong et al., 

2023). Ceramic-polymer composites, for example, 

utilize ceramics like hydroxyapatite (Mohammed et al., 

2023) or tricalcium phosphate, Various types of 

polymers have been created to encourage bone healing 

and regeneration, such as poly(lactic-co-glycolic acid) 

(PLGA) or polycaprolactone (Kumar et al., 2022). 

Another type is polymer-metal composites like 

polymer-coated titanium alloys and biodegradable 

magnesium-polymer composites that provide enhanced 

mechanical qualities and biocompatibility (Zerankeshi 

et al., 2022). Additionally, polymers are reinforced with 

nanostructured materials such as hydroxyapatite 

nanoparticles (hydroxyapatite/polymer composites) to 

improve structural strength (Alhussary et al., 2020; 

Tang et al., 2024). Metallic nanocomposites, such as 

nano-titanium or nano-silver, have been used to 

improve their antimicrobial properties (Ghosh and 

Webster, 2021). Lastly, biopolymer-nanoceramic 

composites combine biopolymers like collagen or 

chitosan with nanoceramics (Abdelaziz et al., 2023). 

 

The classification based on biological 

interaction includes osteoconductive, osteoinductive, 

osteogenic, and osteointegrative composites (Khan et 

al., 2012). Osteoconductive bone composites provide a 

scaffold for new bone tissue growth and attachment by 

allowing osteoblasts and osteoprogenitor cells to adhere 

and disseminate from the periosteum and bone marrow 

to the ward composite (Agrawal and Srivastava, 2020). 

Examples include synthetic ceramics, such as 

hydroxyapatite and tricalcium phosphate (Yuan et al., 

2010). Natural polymers, such as collagen or chitosan, 

are combined with inorganic fillers like bioactive glass 

(Guo et al., 2021). Osteoinductive bone composites 

stimulate progenitor cells to differentiate into 

osteoblasts, thus enhancing bone formation (García-

Gareta et al., 2015). These include composites with 

bone morphogenetic proteins (BMPs), such as BMP-2 

and BMP-7 (Liu et al., 2023) and gene-activated 

matrices, which use polymers combined with gene 

delivery systems (e.g., plasmid DNA encoding 

osteogenic factors) (Nedorubova et al., 2022). 

Osteogenic bone composites deliver biological 

molecules, such as stem cells or growth factors (Safari 

et al., 2021). Examples include cell-laden composites, 

which are composites preloaded with mesenchymal 

stem cells (MSCs) or osteoblasts (Salerno et al., 2019). 

Growth factor-coated composites incorporate surface-

bound growth factors like vascular endothelial growth 

factor (VEGF) for angiogenesis or BMPs for 

osteogenesis (Oliveira et al., 2021). Osseointegration 

bone composites are capable of forming a direct bond 

with the surrounding bone tissue, ensuring long-term 

stability (Shah et al., 2019). Examples of these include 

titanium/hydroxyapatite composites, which combine 

osteoconductive hydroxyapatite with titanium for 

superior osteointegration (Oliver-Urrutia et al., 2025) 

and bioactive glass-based composites, which are highly 

bioactive materials that bond with bone while 

promoting osteogenesis (Li et al., 2025). 

 

Classification based on mechanical properties 

and load-bearing capacity categorizes composites into 

low-strength and high-strength types. Low-strength 

composites are designed for non-load-bearing 

applications (Cheng et al., 2021). Examples include 

polymer-ceramic composites (Monia and Ridha, 2024) 

and natural polymer-based composites, which are 

appropriate for small defects or tissue engineering 

where strength is less critical (Sathiya et al., 2024). 

High-strength composites are engineered for weight-

bearing bones like the femur, tibia, or spine (Heimbach 

et al., 2018). Which include ceramic-metallic 

composites that combine bioactive ceramics with 

durable metals like titanium or magnesium 

(Khorashadizade et al., 2021) and titanium-based bone 

implants, which provide mechanical strength and 

stability in load-bearing applications (Abd-Elaziem et 

al., 2024). The family of materials known as smart 

composites or intelligent composites has shown great 

promise due to its capacity to recognize structural and 

environmental changes (Kontiza and Kartsonakis, 

2024). Reactive materials were used to define smart 

materials, meaning that their properties can be altered in 
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response to changes in the environment and returned to 

their initial conditions (Xing et al., 2023). Smart 

polymeric biomaterials are examples of a viable 

substitute that promotes endogenous bone healing (Wei 

et al., 2022). 

 

Classification based on degradability and 

bioresorption rate focuses on the temporal support 

provided by the composites during bone healing. Fast-

degradable composites include polymeric-ceramic 

composites, which utilize fast-degrading polymers like 

Poly Lactic Acid (PLA) and Polyglycolic acid   (PGA) 

combined with beta-tricalcium phosphate (β-TCP), and 

magnesium alloy composites (Dachasa et al., 2024). 

Slow-degradable composites offer extended support for 

long-term healing, such as titanium-based bone 

composites and bioactive glass composites, and non-

degradable composites, such as metallic materials like 

titanium, stainless steel, and tantalum (Abd-Elaziem et 

al., 2024). 

 

Classification based on synthesis and 

fabrication techniques distinguishes between 

conventional and advanced methods. Conventional 

composite synthesis includes methods like sol-gel, 

precipitation, casting, or melt blending (Sumithra et al., 

2023). An example is polymer casting, where ceramic 

powders are combined with polymer matrices to create 

composite structures (Parida et al., 2024). Advanced 

fabrication techniques allow for precise control of 

composite properties and include 3D bioprinting, which 

is used to design custom composites with variable 

porosity based on imaging data; electrospinning, which 

produces a nanofiber composite that mimics bone's 

extracellular matrix; and additive manufacturing, which 

builds composite structures layer by layer and enables 

tailored mechanical as well as biological properties 

(Maresca et al., 2023). 

 

Classification based on functionalization and 

bioactive additives involves enhancing composites with 

bioactive agents to improve healing outcomes. Growth 

factor-loaded composites incorporate molecules like 

BMPs, VEGF, or TGF-β (Safari et al., 2021). 

Antibiotic-loaded composites are infused with 

antibiotics such as gentamicin or vancomycin (Bistolfi 

et al., 2011). Drug-delivery composites are designed to 

gradually release therapeutic agents, such as anti-

inflammatory or anti-cancer drugs (Chen et al., 2020). 

 

Composites fabrication techniques                    
Fabrication techniques used to create bone 

composites for medical and veterinary applications are 

influenced by material qualities like porosity, 

biocompatibility, degradation rate, and mechanical 

strength. One widely used method is the sol-gel process 

commonly used for creating bioactive ceramic-based 

composites in bone regeneration applications 

(Murugan and Parcha, 2021). Another important 

method is electrospinning, which creates a nanofiber 

composite by applying an electric field to a polymer 

melt or solution, pulling it into thin threads 

(Abdulhussain et al., 2023).  These nanofibers mimic 

the bone's extracellular matrix (ECM) and can promote 

cell attachment and growth factor release (Dhand et al., 

2016). 3D printing, also known as additive 

manufacturing, has gained popularity in bone composite 

fabrication which builds three-dimensional items layer 

by layer based on digital models, allowing for exact 

control over composite shape, porosity, and structure   

(Girón et al., 2021; Zhang et al., 2023). 

  

Freeze-drying or lyophilization is another 

conventional method that produces highly porous 

materials with precise pore diameters to create 

biodegradable composites  (Jain et al., 2015). Melt 

blending is a relatively simple and cost-effective 

technique this method combines the biomechanical 

properties of ceramics with the flexibility and 

degradability of polymer (Biglari and Zare, 2024). 

Solvent casting and particulate leaching are other 

effective techniques for creating porous bone 

composites. Solvent casting and particulate leaching 

involve pouring a polymer solution into a mold, which 

evaporates to form a solid composite. Particulate 

leaching, on the other hand, incorporates salt particles 

into the polymer solution, and these particles are 

removed after the casting process, creating a porous 

structure (Joseph et al., 2023). Gas foaming is a 

technique where a gas, typically CO₂, is introduced into 

a polymer melt, causing it to foam and produce a porous 

structure with controlled porosity and homogeneous 

pore sizes (Wubneh et al., 2018). 

    

Hot pressing is a process that uses heat and 

pressure to solidify a polymer-ceramic composite 

material and is commonly used to create high-density 

scaffolds capable of withstanding mechanical loads 

(Miranda et al., 2016). Thermally Induced Phase 

Separation (TIPS) is a process where a polymer solution 

separates into phases when cooled below the solvent 

freezing point (Murugan and Parcha, 2021). TIPS 

allows for precise control over porosity, mechanical 

strength, and degradation rates, making it suitable for 

bone tissue engineering (Rowlands et al., 2007).  

 

Biomaterials in composite formation         
Biomaterials play a crucial role in forming bone 

composite materials, each contributing unique 

properties to enhance the regenerative potential of bone 

composites and implants. These materials, from natural 

substances like hydroxyapatite (HA) to synthetic 

polymers and ceramics, form the backbone of 

composite systems designed for bone tissue engineering 
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and fracture healing. Hydroxyapatite (HA) is one of the 

most commonly used biomaterials. It is a natural 

mineral form of calcium apatite that closely resembles 

the mineral composition of bone. Its primary function is 

osteoconductivity, as it promotes osteoblast attachment, 

proliferation, and differentiation, aiding bone 

mineralization and osseointegration. HA is widely used 

in bone fillers, composites, and coatings for implants 

(Pires et al., 2021). Collagen, another important 

biomaterial, is a fibrous protein that makes up the 

majority of the bone extracellular matrix. It mimics the 

natural bone matrix and helps bone regeneration in 

composites and scaffolds by providing structural 

support, encouraging cellular infiltration, and 

promoting angiogenesis (Zang et al., 2017). 

 
Chitosan, a biopolymer derived from chitin, 

offers antimicrobial properties while enhancing 

osteoblast adhesion, mineralization, and cell 

proliferation (Abbas et al., 2020). It is commonly used 

in hydrogels, scaffolds, and composites for bone tissue 

engineering (Shi et al., 2016). Polylactic acid (PLA) and 

polyglycolic acid (PGA) are biodegradable polymers 

that provide structural support in scaffolds and 

composites (Girón et al., 2021; Khosronejad et al., 

2025). Tricalcium phosphate (TCP), a ceramic 

biomaterial similar to bone mineral, is widely used for 

critical defect repairs due to its ability to support bone 

regeneration and promote osseointegration and 

osteogenesis (Bohner et al., 2020). Biphasic calcium 

phosphate (BCP), a combination of HA and β-TCP, 

takes advantage of HA's mechanical strength and β-

TCP's resorbability, offering a balanced solution for 

bone grafts and composites (Girón et al., 2021; Ferbert 

et al., 2023). Silk fibroin, a protein from silk, is used in 

composites for tissue engineering to promote 

osteogenesis. Similarly, fibrin, a protein involved in 

blood clotting, is used to form hydrogels that support 

cell adhesion, migration, and neovascularization (Noori 

et al., 2017). On the other hand, gelatin, derived from 

collagen, also plays a crucial role in composites and 

hydrogels, supporting osteoblast growth and bone 

regeneration (Echave et al., 2017). 

 
Polycaprolactone (PCL) is a biodegradable 

polyester with high mechanical stability, often used in 

composites for long bone and defect repair (Dewey et 

al., 2021). Carbon-based nanomaterials such as 

graphene and carbon nanotubes (CNTs) are 

incorporated into bone composites (Liu et al., 2021). 

Hydrogels, water-swollen, cross-linked polymers, 

create a moist environment that promotes cell 

migration, growth, and the localized delivery of growth 

factors (van Houdt et al., 2021). Titanium (Ti), a 

biocompatible and bioinert metal, is commonly used in 

implants and prosthetics due to its strong mechanical 

support and ability to promote osseointegration (Kaur 

and Singh, 2019). The bioglass, which is a bioactive 

glass material, also supports bone-like mineral 

formation and osteoblast activity (Girón et al., 2021).  

 
Calcium sulfate, a biodegradable and 

osteoconductive material, is a temporary composite 

supporting bone growth. Polyhydroxyalkanoates (PHA) 

are biodegradable polymers with adjustable mechanical 

properties. Polyvinyl alcohol (PVA) and polyethylene 

glycol (PEG) are hydrophilic synthetic polymers that 

are used in bone regeneration (Pulingam et al., 2022). 

Polyurethane (PU), a versatile polymer, mimics the 

elasticity of bone tissue. Titanium dioxide (TiO₂) 

nanoparticles are included in bone composites (Cooke 

et al., 2020). Hydroxypropyl methylcellulose (HPMC), 

which is a cellulose derivative, supports osteoblast 

growth. Fibrinogen, a plasma protein, is used in fibrin 

hydrogels, which enhance tissue regeneration and 

support cell adhesion in bone healing (Seifi et al., 2024). 

Zinc oxide (ZnO), a biocompatible ceramic material, is 

incorporated into bone composites to promote 

osteogenesis, improve bone mineralization, and 

stimulate osteoblast differentiation (Li et al., 2020; 

Feroz and Dias, 2021). Ceramic composites, composed 

of materials like alumina, zirconia, or silica, offer high 

mechanical strength, osteoconductivity and bioactivity 

(Zhao et al., 2021). 

 
Poly (lactic-co-glycolic acid) (PLGA), a 

biodegradable copolymer, promotes cellular adhesion 

and provides mechanical support (Basutkar et al., 

2015). Alginate, a naturally occurring polysaccharide, 

forms hydrogels that mimic the ECM and promote 

cellular infiltration and osteogenesis. BMPs, a family of 

growth factors essential for bone development and 

regeneration, are often used in bone grafts and 

composites (Liu et al., 2024; Ribeiro et al., 2024). 

Mineral trioxide aggregate (MTA) is a powdered 

mixture of mineral oxides with strong biological activity 

and non-cytotoxic properties (Tay, 2014). Nano 

graphene oxide (nGO) has emerged as a promising 

additive for bone tissue engineering due to its ability to 

mimic the stiffness of bone (Xing and Liu, 2024). 

 

Advanced types of composites       
Over the past years, significant advancements 

in biomaterials have led to the development of a wide 

range of composites for healing CSBDs. Magnesium-

based alloys combined with HA provide a 

biodegradable composite. Similarly, magnesium alloy-

collagen composites enhance biodegradability and 

osteogenesis (Shi et al., 2023). Whereas 

polycaprolactone (PCL)-HA composites integrate 

PCL’s mechanical stability with HA’s regenerative 

capabilities (Podgorbunsky et al., 2025), polyurethane-

HA composites enhance flexibility and support bone 

mineralization (Sultan, 2018). 
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In the domain of metal-based composites, 

magnesium-based composites (Mg/HA), zinc-based 

composites, and titanium dioxide nanotubes are leading 

the way in improving osteointegration. Additionally, 

magnesium/polymer hybrid composites and metal-

organic frameworks (MOFs) have unique qualities such 

as high porosity and tunable properties, making them 

ideal for biological applications. Recently, researchers 

have focused their attention on incorporating MOFs into 

composites for bone tissue regeneration (BTE) (Mi et 

al., 2024). The many uses of MOF-integrated 

composites in BTE are studied, including antibacterial 

characteristics, osteogenic differentiation, angiogenesis, 

and immunomodulation (Imtiaz et al., 2025). In the 

realm of metal-based composites, bio-inspired 

magnesium-polymer composites are used for bone 

repair (Omidian and Babanejad, 2024). Further 

innovations include graphene-HA and carbon 

nanotubes-hydroxyapatite (CNT-HA) composites, 

improving mechanical strength and osteoconductivity 

(Abubakre et al., 2023).  

 

Additionally, biodegradable silk fibroin-

collagen composites mimic natural bone environments, 

while polyvinyl alcohol (PVA)-HA composites 

combine elasticity with mineralization for enhanced 

healing (Wei et al., 2023). Moreover, nanoscale HA-

chondroitin sulfate composites enable osteogenesis and 

cartilage repair (Li et al., 2018). Additionally, chitosan-

HA composites offer antimicrobial properties alongside 

osteoconductivity. While fibrinogen-PCL composites 

encourage angiogenesis and provide a controlled 

degradation profile. Similarly, chondroitin sulfate-

collagen composites promote osteogenesis, and 

alginate-HA composites offer biodegradable hydrogels 

that support cell adhesion and bone mineralization 

(Khodaverdi et al., 2024; Cao et al., 2024). While 

calcium sulfate-HA composites are resorbable fillers to 

support bone regeneration (Nilsson et al., 2013). 

Similarly, gelatin-alginate hybrids provide a composite 

that combines biodegradability with enhanced cellular 

activity (El-Bahrawy et al., 2024). Additionally, 

chitosan-HA-gelatin composites optimize adhesion 

(Peter et al., 2010). While silk fibroin-HA composites 

improve osteoconductivity and mechanical flexibility 

(Du et al., 2009).  
 

PCL-bioactive glass composites provide 

excellent structural support for load-bearing 

applications. Additionally, ceramic-polymer hybrids, 

incorporating alumina or zirconia with polymers like 

PCL or PLGA, offer a balance between mechanical 

strength and controlled degradation (Palmero et al., 

2016). Moreover, gelatin-PCL composites improve cell 

attachment and bone mineralization (Shahin-

Shamsabadi et al., 2018). Bioactive glass-collagen 

composites stimulate bone formation and improve 

cellular adhesion; moreover, graphene and CNTs have 

been incorporated into polymers and ceramics to 

reinforce mechanical strength, conductivity, and 

bioactivity (Kumar et al., 2020). Additionally, bioactive 

ceramics with silicon further enhance bone 

mineralization and cellular response (Francis, 2018).  
 

Recent advancements in bone regeneration 

materials have explored various composite strategies 

that combine multiple biomaterials to enhance bone 

healing, particularly for CSBDs. Calcium-based 

composites have played a pivotal role in bone 

regeneration, with materials like HA, TCP, BCP, and 

Calcium Phosphate Cement (CPC) being extensively 

researched for their osteoconductive properties (Min et 

al., 2024). Innovations such as strontium-doped calcium 

phosphate (Sr-CP) and fluorapatite-based composites 

further improve biological performance by promoting 

cell adhesion and osteogenesis (Tavoni et al., 2021). 

Newer composites incorporating calcium sulfate 

hemihydrate (CSH), calcium silicate-based composites, 

and hybrid systems such as α-tricalcium 

phosphate/chitosan and calcium phosphate/polymer 

composites with antibiotics also enhance healing while 

addressing infection risks (Kjalarsdóttir et al., 2019). 

Other calcium-based composites, such as 

hydroxyapatite/strontium substitution and calcium 

phosphate/polymer nano-hybrids, and the development 

of magnesium-substituted bioactive glass/HA and 

calcium silicate/graphene hybrid composites further 

enhance the material’s ability to regenerate bone tissue 

effectively (Du et al., 2020; Daneshmandi et al., 2021). 
 

Bioactive glass-based composites such as 

mesoporous bioactive glass (MBG) have been 

engineered to improve the bioactivity and 

osteoinductivity of the composite (He et al., 2023). 

Materials like zinc-doped bioactive glass and strontium-

doped bioactive glass are showing the potential to 

accelerate bone regeneration (Balu et al., 2021). The 

addition of functional components like bioactive 

glass/chitosan composite and bioactive glass/silk 

fibroin provides additional support for cellular growth 

and mineralization (Liang et al., 2021). Advancements 

in 3D-printed bioactive glass composites and bioactive 

glass with micro/nanoporous structures are opening new 

possibilities for customized composite fabrication 

(Golniya et al., 2024). Bioactive glass-based 

composites such as zirconium-doped bioactive glass 

and aluminum-substituted bioactive glass composites, 

are providing solutions to overcome challenges in 

traditional bone grafts (Hammami et al., 2023; Sreena 

et al., 2024).  
 

Polymer-based composites like poly(lactic-co-

glycolic acid) (PLGA)/HA, PCL/TCP, and 

polyethylene glycol (PEG)/Nano-HA combine the 

flexibility of polymers with the regenerative power of 

calcium phosphates or ceramics (Gentile et al., 2014). 
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Other innovations such as PLA/chitosan, PU/bioactive 

glass, and alginate-based hydrogels are emerging to 

promote cellular infiltration and differentiation 

(Motameni et al., 2024). Gelatin methacryloyl 

(GelMA)/HA and silk fibroin/polylactic acid 

composites also show the potential to provide 

mechanical strength and biocompatibility (Guo et al., 

2021). In polymer-based composites, innovations like 

polymeric composite scaffolds with controlled drug 

release for bone healing similarly polylactic acid-co-

ethylene glycol (PLAEG) with bioactive glass 

demonstrate the importance of combining polymers and 

bioactive materials to enhance healing at the site of the 

bone defect (Filippi et al., 2020; Souza et al., 2024). 

PCL-bioactive glass composites provide excellent 

structural support for load-bearing applications 

(Dziadek et al., 2021). Additionally, ceramic-polymer 

hybrids, incorporating alumina or zirconia with 

polymers like PCL or PLGA, offer a balance between 

mechanical strength and controlled degradation 

(Palmero et al., 2016). Moreover, gelatin-PCL 

composites improve cell attachment and bone 

mineralization (Shahin-Shamsabadi et al., 2018).  
 

Collagen-based composites have been 

optimized for bone healing with materials such as 

mineralized collagen/polycaprolactone (mCol/PCL) 

and collagen/chitosan/bioactive glass composites (Li et 

al., 2021). Additionally, composites like collagen/nano-

silver composites, collagen/CNTs hybrids, and 

collagen/HA/chitosan hybrid composites offer further 

enhancements in antibacterial properties and 

mechanical strength (Vijayalekha et al., 2023).  
 

Hybrid composites that combine multiple 

components such as chitosan/bioactive glass/nano-HA, 

GelMA/bioactive glass/nano-silica, and silk 

fibroin/HA/graphene oxide are at the forefront of bone 

tissue engineering (Nwuzor et al., 2025; Sousa et al., 

2025). Advanced hybrid composites such as 

chitosan/HA/graphene oxide for bone repair and 

GelMA/graphene oxide/bioactive glass composite 

scaffolds are facilitating the development of 

multifunctional materials for bone regeneration (Liu et 

al., 2021). Nano-silver/bioactive glass/polymer 

composites for antibacterial bone healing combine the 

healing properties of bioactive glass with antibacterial 

agents (Zhang et al., 2024). 
 

Graphene and carbon-based composites like 

graphene oxide/HA (GO/HA) and CNTs/collagen-

based composites have gained attention due to their 

unique mechanical strength and conductivity (Chen 

and Li, 2022; Amiryaghoubi et al., 2022). The 

inclusion of graphene-polymer composite for bone 

tissue engineering and graphene-based nanocomposite 

hydrogels for bone regeneration represents a shift 

towards incorporating carbon nanomaterials for 

improving mechanical properties and promoting cell 

adhesion and differentiation (Liu and Wang, 2023; Lv 

et al., 2025). 
 

Advanced functional composites such as 

fibronectin-coated composites, growth factor-

embedded hydrogels, and stimuli-responsive 

composites (e.g., pH- or temperature-sensitive) are 

being developed to allow controlled drug release, 

optimize healing, and adapt to the physiological 

conditions of the site (Canciani et al., 2023). The 

integration of antimicrobial polymer/ceramic 

composites ensures that infections do not compromise 

bone healing, especially in CSBDs (He et al., 2025). 

The advent of 3D-printed composites has revolutionized 

the design of composites with the ability to precisely 

control the composite's structure, porosity, and 

mechanical properties. 3D-printed ceramic/bioactive 

glass composites and 3D-printed graphene oxide/HA 

composites show great promise for replicating the 

native bone structure and improving tissue integration 

(Belaid et al., 2020; Alonso-Fernández et al., 2023). 
 

Nanotechnology-inspired composites like 

nano-hydroxyapatite embedded in polymeric matrices, 

nano-silica-reinforced polymer/HA composites, and 

nano-bioactive glass/nano-graphene oxide hybrids are 

taking center stage in bone regeneration research 

(Kumari et al., 2022; Mo et al., 2023). New approaches 

in nanotechnology and bifunctional materials, such as 

nano-structured calcium phosphate/bioactive glass 

composites and injectable nanocomposites for bone 

healing, are advancing the ability to treat larger bone 

defects with minimal invasiveness, ensuring better 

integration with bone tissue (Abdolahinia et al., 2024; 

Pablos et al., 2024). Similarly, the injectable thermo-

responsive hydrogel for bone tissue engineering 

provides a minimally invasive approach with great 

potential for bone regeneration (Romagnoli et al., 

2014). Miscellaneous innovative composites, including 

silk fibroin/nano-HA/chitosan and thermo-responsive 

hydrogels with osteogenic additives, are being explored 

for unique approaches to bone repair (Miranda et al., 

2016). 
  

Injectable composites have also seen 

remarkable progress, with injectable hydrogel/calcium 

phosphate nanocomposites and polymeric composites 

being developed for more effective bone regeneration 

(Omidian and Chowdhury, 2023). These injectable 

bioactive glass/chitosan hydrogels offer efficient 

healing and have been combined with nano-

hydroxyapatite/polymer composites for bone repair. 

Additionally, injectable hydroxyapatite/graphene oxide 

composites are emerging as a potential solution for 

addressing critical bone defects, while injectable 

PCL/HA nanocomposite hydrogels and gelatin-alginate 

hybrid composites demonstrate promising results in 

tissue engineering applications (Yao et al., 2019; Ye et 

al., 2023). 
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The development of antibacterial and 

osteogenic hybrid composites, including chitosan/silver 

nanoparticles for antibacterial bone repair and 

antibiotic-loaded bioactive glass composites for bone 

defect healing, addresses both infection control and 

bone healing (Wang et al., 2023). 3D-printing 

innovations for bone regeneration continue to evolve 

with 3D-printed multi-material bone composite 

scaffolds offering the ability to tailor the material 

properties to specific clinical needs (Ai et al., 2020). 
 

Significant strides have been made in surface 

modification techniques for enhanced biocompatibility. 

These include plasma-treated hydroxyapatite/polymer 

composites and surface-functionalized bioactive glass 

scaffolds, which promise improved bone integration. 

Polymers with bioactive peptide coatings and surface-

modified graphene/bioactive glass composites are 

gaining attention for their ability to support bone 

healing and integration (Qi et al., 2023; Subramaniyan 

et al., 2024). 
 

Evaluation of the effectiveness of bone 

composites in promoting bone healing        
High-resolution micro-CT imaging is a non-

invasive technique that provides a 3D evaluation of 

bone healing, allowing detailed analysis of bone 

formation, mineralization, and composite integration. It 

tracks bone defects and composite degradation, 

assessing healing progress and effectiveness (Su et al., 

2024). Biomechanical testing in vivo measures bone 

functional recovery by analyzing the load responses of 

composite materials implanted in living organisms. It 

assesses strength, stability, and load-bearing capacity, 

providing important information for treatment response 

and functional stress tolerance (Hente et al., 2003). 

Histological and immunohistochemical evaluation 

examines cellular responses and bone formation at 

injury sites using H&E staining (Okasha et al., 2022). 

It helps understand bone remodeling and 

vascularization during healing, revealing cellular 

dynamics (Di Carlo et al., 2018). 
 

Advanced biomechanical testing, including 

micro-mechanical tests at bone-composite interfaces 

and advanced biomechanical tests, assesses nano-

mechanical properties like stiffness and elastic 

modulus, adhesion strength, and material hardness 

(Kong et al., 2020). These tests help understand the 

bone-composite system's response to mechanical 

forces and contribute to regeneration (Niu et al., 2023). 

Gene expression and osteogenic markers investigate 

the effects of composite materials on osteogenic 

differentiation and bone remodeling during healing (El 

Ashry et al., 2016). 
 

RT-PCR or RNA sequencing tracks the 

expression of key osteogenic markers such as alkaline 

phosphatase (ALP), osteocalcin, collagen type I, and 

VEGF. This methodology helps elucidate the molecular 

mechanisms by which composite materials influence 

bone healing and regeneration, providing insights into 

their efficacy as therapeutic agents (Granéli et al., 

2014).  
 

Real-time bioluminescence imaging is a non-

invasive method for tracking cellular activity via 

genetically engineered bioluminescent reporters, such 

as osteoblast differentiation. Light-emitting markers 

like luciferase are utilized to monitor real-time bone 

healing, enabling the observation of cellular dynamics 

in vivo (Conway et al., 2020). This technique offers the 

advantage of continuous monitoring without the need 

for repeated invasive procedures (Kimelman et al., 

2013). X-ray imaging and radiographic scoring are 

commonly used to monitor bone healing and union. 

Scoring systems are used to quantify bone consolidation 

and assess the progress of bone healing (Gadallah et al., 

2022). X-ray imaging provides valuable information 

about the structural integrity of the bone over time, 

allowing for the assessment of healing at various stages 

(Cunningham et al., 2017). Fluorescence microscopy 

is employed to examine bone mineralization and 

osteogenesis during healing (Via and Jerele, 2023). 

Fluorescent dyes such as calcein and alizarin red are 

used to label new bone and mineral deposits, allowing 

for high-resolution imaging of bone regeneration (Via 

and Jerele, 2023). Magnetic resonance imaging (MRI) 

is a non-invasive technique used to assess soft tissue and 

bone composite integration, vascularization, cartilage 

regeneration, and bone healing without radiation 

exposure (Pop et al., 2019). 
 

Nano-CT imaging provides ultra-high-

resolution imaging for a more detailed analysis of 

composite microarchitecture and bone remodeling. This 

method tracks porosity, vascularization, and composite 

degradation with greater spatial resolution compared to 

traditional micro-CT (Salmon and Sasov, 2007). Nano-

CT is particularly valuable for assessing the 

microstructure of composites and their interaction with 

surrounding bone tissue (Salmon and Sasov, 2007). 

Biochemical markers are non-invasive markers in blood 

and tissues that are used to assess metabolic activity and 

osteogenesis during bone healing. Key markers like 

ALP, osteocalcin, C-terminal telopeptide (CTx-1), and 

collagen degradation products are measured to evaluate 

both systemic and local bone remodeling. These 

markers provide important insights into the biochemical 

processes that accompany bone healing (Cox et al., 

2010).  

Cell viability and proliferation assays evaluate 

composite biocompatibility, osteoblast and MSC 

growth support, cytotoxicity, and proliferation rates, 

providing crucial information for the healing process of 

tissue formation (van Erk et al., 2024). Molecular 

imaging for bone tissue viability uses molecular 
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imaging methods such as positron emission tomography 

(PET) and single-photon emission computed 

tomography (SPECT) to assess bone tissue viability, 

vascularization, and metabolic activity during the 

healing process. Radiolabeled tracers like 

fluorodeoxyglucose (FDG) for metabolic activity and 

99mTc-labeled agents (for bone mineralization) capture 

detailed, non-invasive images that help monitor bone 

turnover, vascular growth, and composite integration. 

Real-time molecular imaging of metabolic and vascular 

activity offers essential insights into the healing process, 

providing valuable information that aids in the 

refinement of bone composite designs for improved 

treatment outcomes (Bar et al., 2003). 

 
CONCLUSION 

In recent years, bone composites have provided 

substantial distinct advantages over traditional grafting 

methods for the treatment of CSBDs. Therefore, they 

are regarded as key challenges in bone tissue 

engineering and received extensive attention. Bone 

composites significantly improved the rate and quality 

of osteogenic differentiation, mechanical strength, and 

osteogenic conductivity. As research progresses, bone 

composites are expected to provide an effective long-

term solution for large bone defects in animals and 

improve human bone regeneration strategies as well as 

veterinary regenerative therapies in the future.  
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