ABBASZADEGAN, A., GHAHRAMANI, Y., GHOLAMI, A., HEMMATEENEJAD, B., DOROSTKAR, S., NABAVIZADEH, M., and SHARGHI, H., 2015. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study. J. Nanomater; 2015:1–8.
https://doi.org/10.1155/2015/720654
ABO-SHAMA, U.H., EL-GENDY, H., MOUSA, W.S., HAMOUDA, R.A., YOUSUF, W.E., HETTA, H.F., and ABDEEN, E.E., 2020. Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms. Infect. Drug Resist
. 13: 351–362.
https://doi.org/10.2147/idr.s234425
AKINYEMI, K., O., IWALOKUN, B.A., FOLI. F., OSHODI, K., and COKER, A.O., 2011. Prevalence of multiple drug resistance and screening of enterotoxin (stn) gene in
Salmonella enterica serovars from water sources in Lagos, Nigeria. Public Health 125:65–71.
https://doi.org/10.1016/j.puhe.2010.11.010
AMMAR, A. M., ABDEE, E. E., ABO-SHAM, U.H., FEKR,E., KOTB, E., and ELMAHALLA. W., 2019. Molecular characterization of virulence and antibiotic resistance genes among Salmonella serovars isolated from broilers in Egypt. Lett Appl Microbiol
https://doi.org/10.1111/lam.13106
ANWAR, Y., MASRI, A., KOMAL, RAO, KAVITHA, RAJENDRAN, NAVEED, A.K., MUHAMMAD, R.S., and RUQAIYYAH, S., 2019. Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Scientific Reports volume 9.
https://www.nature.com/articles/s41598-019-39528-0
BAJAJ, M., PANDEY, S. K., NAIN, T., BRAR, S. K., SINGH, P., SINGH S., WANGOO, N., and SHARMA, R.S., 2017. Stabilized cationic dipeptide capped gold/silver nanohybrids: Towards enhanced antibacterial and antifungal efficacy. Colloids Surf. B Biointerfaces 158: 397–407.
https://doi.org/10.1016/j.colsurfb.2017.07.009
BANOEE, M, SEIF, S., NAZARI, Z.E. JAFARI FESHARAKI,P., SHAHVERDI,H.R, MOBALLEGH, A.K.M., and SHAHVERDI, A.R., 2010. ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J of Biomed Mater Res Part B: Appl Biomater 93:557–61.
https://doi.org/10.1002/jbm.b.31615
BARAPATRE, A. K.R., and ADIL, H. J.H.A., 2016. Synergistic antibacterial and antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading fungus. Bioresources and Bioprocessing . Volume 3, article number 8.
https://doi.org/10.1186/s40643-016-0083-y
BEHERA, P., KUTTY, M., SHARMA, B., KUMAR, A., and SAXENA, M., 2015. Cloning and sequencing of
hfq (host factor required for synthesis of bacteriophage Q beta RNA) gene of
Salmonella Typhimurium isolated from poultry. Veterinary World.;8: 2231-0916.
https://doi.org/10.14202/vetworld.2015.610-614
BEZERRA, W. G. A., DA SILVA, I. N. G., VASCONCELOS, R. H., MACHADO, D. N., DE SOUZA LOPES, E., LIMA, S. V. G., TEIXEIRA, R. S., LIMA, J. B., OLIVEIRA, F. R., and MACIEL, W. C., 2016. Isolation and Antimicrobial Resistance of Escherichia coli and Salmonella enterica subsp. enterica (O: 6,8) in Broiler Chickens. Acta Scientiae Veterinariae, 44(1364): 1-7.
http://dx.doi.org/10.22456/1679-9216.80957
CARDONA-CASTRO, N., RESTREPO-PINEDA, E., and CORREA- OCHOA, M., 2002. Detection of hilA gene sequences in serovars of
Salmonella enteric subspecies enterica. Mem Inst Oswaldo Cruz. 97(8): 1153-1156. DOI:
https://doi.org/10.1590/s0074-02762002000800016
CDC, 2023. Salmonella Outbreaks 2023: Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Food-borne, Waterborne, and Environmental Diseases (DFWED)
https://www.cdc.gov/salmonella/outbreaks.html
CHANG, Y.N., ZHANG, M., XIA, L., ZHANG J., and XING, G. 2012. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials. 5:2850–71.
https://doi.org/10.3390/ma5122850
DAVIN-REGLI A, BOLLA JM, JAMES CE, LAVIGNE JP, CHEVALIER J, GARNOTEL E, MOLITOR A, and PAGÈS J.M., 2008. Membrane permeability and regulation of drug "influx and efflux" in enterobacterial pathogens. Curr Drug Targets. Sep;9(9):750-9.
https://doi.org/10.2174/138945008785747824
DROR-EHRE, A., MAMANE, H., BELENKOVA, T., MARKOVICH, G., and ADIN, A., 2009. Silver nanoparticle–
E. coli colloidal interaction in water and effect on
E. coli survival. J Colloid Interface Sci 339:521–526.
https://doi.org/10.1016/j.jcis.2009.07.052
ELSHERIF, W.M., and ALI, D.N., 2020. Antibacterial effect of silver nanoparticles on antibiotic resistant E. coli O157:H7 isolated from some dairy products. Bulg J Vet Med, 23, No 4, 432−442.
FEYNMAN, R. 1991.There's plenty of room at the bottom. Science. 254:1300-1301.
GAST, R.K., 2008. Serotype-specific and serotype Airborne transmission of Salmonella enteritidis independent strategies for preharvest control of infection between groups of chicks in controlled food-borne Salmonella in poultry. Avian Dis., 51: environment isolation cabinets. Avian Dis., 42: 315- 817-828.
https://doi.org/10.1637/8090-081807.1
HUANG, W., TSAI, L., LI, Y., HUA, N., SUN, C., WEI, C., ET AL., 2017. Widespread of horizontal gene transfer in the human genome. BMC Genomics. 18: 1–11.
https://doi.org/10.1186/s12864-017-3649-y
IRAM, S., KHAN, J., A.,N., AMAN,AKHTAR, N., ZULFIQAR, Z.,and YAMEEN, M., A., 2016. Enhancing the Anti-Enterococci Activity of Different Antibiotics by Combining with Metal Oxide Nanoparticles. Jundishapur J Microbiol. 9(3): e31302.
https://doi.org/10.5812/jjm.31302
JURY, K. L., VANCOV, T., STUETZ, R., M., and KHAN, S., J., 2010. Antibiotic resistance dissemination and sewage treatment plants
. Appl. Microbiol. 1: 509–519. Available online at:
https://www.researchgate.net/ publication/233427415_Antibiotic_resistancedissemination_and_sewage_treatment_plants (accessed ovember 28, 2022).
KABIR, S.M. 2010. Avian colibacillosis and salmonellosis: a closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. Int J Environ Res Public Health, 7(1): 89-114.
https://doi.org/10.3390/ijerph7010089
KOURMOULI, A., VALENTI, M., VAN RIJN, E., BEAUMONT, H., J., KALANTZI, O.I., SCHMIDT-OTT, A., and BISKOS, G., 2018. Can disc diffusion susceptibility tests assess the antimicrobial activity of engineered nanoparticles? J Nanoparticle Res., 20, 1–6.
https://doi.org/10.1007/s11051-018-4152-3
LEE, J., H., HUH, Y., M., JUN, Y., W., SEO, J., W., JANG, J., T., SONG, H., T., KIM, S., CHO, E.J., YOON, H., SUH, J., and CHEON, J., 2007. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med
. 13:95–99. 10.1038/nm1467.
https://doi.org/10.1038/nm1467
MANTZANA,P. E., PROTONOTARIOU, A. KASSOMENAKI, G. MELETIS, A. TYCHALA, E., KESKIL,I., ARHONT, M., KATSANOU, C., DAVITI, A., VASILAKI, O., KAGKALOU, G., and SKOURA , L., 2023. In vitro synergistic activity of antimicrobial combinations against carbapenem-and colistin-resistant acinetobacter baumannii and klebsiella pneumonia. Antibiotics, 12 (1): 93.
https://doi.org/10.3390/antibiotics12010093
MEAKINS, S., FISHER, I.S., BERGHOLD, C., GERNER-SMID, P., TSCHÄPE, H., CORMICAN, M., LUZZI, I., SCHNEIDER, F., WANNETT, W., and COIA, J., 2008. Antimicrobial drug resistance in human nontyphoidal
Salmonella isolates in Europe 2000–2004: a report from the Enter-net International Surveillance Network. Microb Drug Resist 14:31–35.
https://doi.org/10.1089/mdr.2008.0777
MOHAMED, R. S. A., and BASIOUNI, R.S. 2017. Isolation and characterization of Salmonella Enteritidis and Salmonella Typhimurium from chicken meat in Egypt. Awad A ,11 (04):
https://doi.org/10.3855/jidc.8043
MORONES, J. R., ELECHIGUERRA, J. L., CAMACHO, A., HOLT, K., KOURI, J. B., RAMÍREZ, J. T., YACAMAN, M. J., 2005. The bactericidal effect of silver nanoparticles. Nanotechnology. 16(10):2346-53.
https://doi.org/10.1088/0957-4484/16/10/059
LOK, C.N., HO, C.M., CHEN, R., HE, Q.Y., UW, W.Y., SUN, H., TAM, P.K.H., CHIU, J.F., and CHE, C.M., 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924.
https://pubs.acs.org/doi/10.1021/pr0504079
MASRI, M., BROWN, D.M., SMITH, D.G.E., STONE, V., and JOHNSTON, H., 2022. Comparison of In Vitro Approaches to Assess the Antibacterial Effects of Nanomaterials
J. Funct. Biomater., 13(4), 255.
https://doi.org/10.3390/jfb13040255
NATIONAL RESEARCH COUNCIL, INSTITUTE OF MEDICINE. 1998. The use of drugs in food animal: Benefits and risks. National Academy Press, Washington DC.
https://doi.org/10.17226/5137
NILAVUKKARASI, M., VIJAYAKUMAR, S., and KUMAR, P.S., 2020. Biological synthesis and characterization of silver nanoparticles with
Capparis zeylanica L. leaf extract for potent antimicrobial and antiproliferation efficiency. Mater. Sci. Energy Technol
. 2020: 3:371–376.
https://doi.org/10.1016/j.mset.2020.02.008
OK, C. N., HO, C. M., CHEN, R., HE QY, YU, W., SUN, H., TAM, P.K.H., CHIU, J. F., and CHE, C.M., 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924.
https://doi.org/10.1021/pr0504079
PAL, S., TAK, Y.K., and SONG, J.M., 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium
Escherichia coli. Appl Environ Microbiol 73:1712–1720.
https://doi.org/10.1128/aem.02218-06
PARAK, W.J., GERION, D., PELLEGRINO, T., ZANCHET, D., MICHEEL, C., WILLIAMS, C.S., BOUDREAU, R., LE, GROS, M.A., LARABELL, C.A., and ALIVISATOS, A.P., 2003. Biological applications of colloidal nanocrystals. Nanotechnology.14:15-27.https://iopscience.iop.org/article/10.1088/0957-4484/14/7/201/pdf
RAI, M.K., DESHMUKH, S., INGLE, A., and GADE, A., 2012. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol
. 112, 841–852.
https://doi.org/10.1111/j.1365-2672.2012.05253.x
SARWAR, S., SALEEM, S., SHAHZAD, F., and JAHAN, S., 2023. Identifying and elucidating the resistance of Staphylococcus aureus isolated from hospital environment to conventional disinfectants. Am J Infect Control.,51:178–183. https://doi.org/10.1016/j.ajic.2022.05.018
SILVER, S., LE PHUNG, T., and SILVER, G., 2006. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634.
https://doi.org/10.1007/s10295-006-0139-7
SU, G., ZHANG, X., GIESY, J.P., MUSARRAT, J., SAQUIB, Q., ALKHEDHAIRY, A.A., and YU, H., 2015. Comparison on the molecular response profiles between nano zinc oxide (ZnO) particles and free zinc ion using a genome-wide toxico-genomics approach. Environ Sci Pollut Res Int. 22:17434–42.
https://doi.org/10.1007/s11356-015-4507-6
TAJIK, S., TAHER, M.A., and BEITOLLAHI, H., 2014. Application of a new ferrocene derivative modified-graphene paste electrode for simultaneous determination of isoproterenol, acetaminophen and theophylline. Sensors and Actuators B., 197:228–236.
https://doi.org/10.1016/j.snb.2014.02.096
VASSALLO, J., RICH, B., and HANDY, R., D., 2022. Exposure of
Escherichia coli to cadmium telluride quantum dots, silver nanoparticles or cupric oxide nanoparticles during aerobic respiratory
versus anaerobic fermentative growth on d-(+)-glucose
†. Environmental Science Nano. 9, 3900.
https://pubs.rsc.org/en/content/articlelanding/2022/en/d2en00403h
WANG YW, CAO A, JIANG Y, ZHANG X, LIU JH, LIU Y., and WANG, H., 2014. Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl Mater Interfaces. 6:2791–8.
https://pubs.acs.org/doi/10.1021/am4053317
WEBBER, M., A., COLDHAM, N., G., WOODWARD, M., J., and PIDDOCK, L., J., V., 2008. Proteomic analysis of triclosan resistance in
Salmonella enterica serovar
Typhimurium. J. Antimicrob. Chemother., 62: 92–97.
https://doi.org/10.1093/jac/dkn138
WITTE, 1998. National Research Council, Institute of Medicine. 1998; Barton.
ZHANG, Q, FAN, W, and GAO, L., 2007. AnataseTIO
2 nanoparticles immobilized on ZnO tetrapods as a highly efficient and easily recyclable photocatalyst. Applied Catalysis B
: Environmental;76: 168–173.
https://doi.org/10.1016/j.apcatb.2007.05.024
ZHANG, Y., CHEN, Y., ZHANG, H., ZHANG, B., and LIU, J., 2013. Potent antibacterial activity of a novel silver nanoparticle-halloysite nanotube nanocomposite powder. J Inorg Biochem., 118:59–64.
https://doi.org/10.1016/j.jinorgbio.2012.07.025
ZHANG, Y., WANG, L., XU, X., LI, F., and WU, Q., 2017. Combined systems of different antibiotics with nnano-CuO against
Escherichia coli and the mechanisms involved. 2018. Nanomedicine, 13: 339–351.
https://doi.org/10.2217/nnm-2017-0290