Ka-oud, H., Khalil, M. (2025). Effect of the Synergism Among Nano-particles, Antibiotics and Biocides on Salmonella Typhimurium Strains, "A Comprehensive Study”. Journal of Applied Veterinary Sciences, 10(2), 86-97. doi: 10.21608/javs.2025.354340.1518
Hussien A. E. Ka-oud; Maged Mahmoud Khalil. "Effect of the Synergism Among Nano-particles, Antibiotics and Biocides on Salmonella Typhimurium Strains, "A Comprehensive Study”". Journal of Applied Veterinary Sciences, 10, 2, 2025, 86-97. doi: 10.21608/javs.2025.354340.1518
Ka-oud, H., Khalil, M. (2025). 'Effect of the Synergism Among Nano-particles, Antibiotics and Biocides on Salmonella Typhimurium Strains, "A Comprehensive Study”', Journal of Applied Veterinary Sciences, 10(2), pp. 86-97. doi: 10.21608/javs.2025.354340.1518
Ka-oud, H., Khalil, M. Effect of the Synergism Among Nano-particles, Antibiotics and Biocides on Salmonella Typhimurium Strains, "A Comprehensive Study”. Journal of Applied Veterinary Sciences, 2025; 10(2): 86-97. doi: 10.21608/javs.2025.354340.1518
Effect of the Synergism Among Nano-particles, Antibiotics and Biocides on Salmonella Typhimurium Strains, "A Comprehensive Study”
1Department of Veterinary Hygiene and Environmental Pollution, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
2Researcher, Department of Veterinary Hygiene and Environmental Pollution, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
Receive Date: 20 January 2025,
Revise Date: 04 March 2025,
Accept Date: 08 March 2025
Abstract
Microbial resistance (AMR) presents a serious hazard to the poultry sector, particularly concerning bacterial infections, as well as Food-borne microorganisms represent significant pathogens that impact food safety and contribute to human illness globally, primarily through the ingestion of food contaminated with these pathogens or their toxins, particularly in poultry products. Environmental contamination with various Salmonella serotypes is common in commercial laying hen farms and is a major concern for the global poultry industry. Understanding the interrelationships between these agents at the molecular level could help elucidate cross-resistance or co-resistance mechanisms, aiding in the design of effective intervention strategies. A total of 20 isolates of S.T. were obtained from poultry layer flocks. Approximately 80% of these isolates exhibited multidrug resistance (MDR). The minimum inhibitory concentration (MIC) was determined using broth microdilution methods. We investigated the synergistic effects of various nanoparticles, including silver nanoparticles (Ag-NPs), zinc oxide nanoparticles (ZnO-NPs), chitosan nanoparticles (CH-NPs), and zeolite nanoparticles (ZE-NPs), on 15 antibiotic-resistant strains of S.T. The antibacterial properties of these nanoparticles, both individually and in combination with selected antibiotics and biocides, were assessed against the tested S.T. isolates. The findings indicated a significant enhancement in antibiotic efficacy when combined with all tested nanoparticles, with the exception of nalidixic acid, where synergy was observed only with ZnO-NPs. The incorporation of nanoparticles with antimicrobial agents may provide a strategy to combat antibiotic resistance and improve their effectiveness. Furthermore, the results demonstrated a significant increase (p < 0.05) in the antibacterial activity of nanoparticles combined with biocides against S. T compared to the use of antibiotics and biocides alone against S.T., attributed to a notable reduction in MIC50. It can be concluded that the application of nanoparticles as efflux pump inhibitors not only aids in restoring the bactericidal effects of existing antibiotics but also diminishes the capacity of microorganisms to develop biofilms.
AABED, K., and MOHAMMED, A., E., 2021. Synergistic and Antagonistic Effects of Biogenic Silver Nanoparticles in Combination with Antibiotics Against Some Pathogenic Microbes. Front.Bioeng. Biotechnology, 9 :1–14. https://doi.org/10.3389/fbioe.2021.652362. 10.3389/fbioe.2021.652362
ABBASZADEGAN, A., GHAHRAMANI, Y., GHOLAMI, A., HEMMATEENEJAD, B., DOROSTKAR, S., NABAVIZADEH, M., and SHARGHI, H., 2015. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study. J. Nanomater; 2015:1–8. https://doi.org/10.1155/2015/720654
ABO-SHAMA, U.H., EL-GENDY, H., MOUSA, W.S., HAMOUDA, R.A., YOUSUF, W.E., HETTA, H.F., and ABDEEN, E.E., 2020. Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms. Infect. Drug Resist. 13: 351–362. https://doi.org/10.2147/idr.s234425
ADENIJI, F. 2018. Global analysis of strategies to tackle antimicrobial resistance. Int. J. Pharm. Pract., 26 (1) : 85-89. https://doi.org/10.1111/ijpp.12365
AKINYEMI, K., O., IWALOKUN, B.A., FOLI. F., OSHODI, K., and COKER, A.O., 2011. Prevalence of multiple drug resistance and screening of enterotoxin (stn) gene in Salmonella enterica serovars from water sources in Lagos, Nigeria. Public Health 125:65–71. https://doi.org/10.1016/j.puhe.2010.11.010
AMMAR, A. M., ABDEE, E. E., ABO-SHAM,U.H., FEKR,E., KOTB, E., and ELMAHALLA. W., 2019. Molecular characterization of virulence and antibiotic resistance genes among Salmonella serovars isolated from broilers in Egypt. Lett Appl Microbiol https://doi.org/10.1111/lam.13106
ANWAR, Y., MASRI, A., KOMAL, RAO, KAVITHA, RAJENDRAN, NAVEED, A.K., MUHAMMAD, R.S., and RUQAIYYAH, S., 2019. Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Scientific Reports volume 9. https://www.nature.com/articles/s41598-019-39528-0
BAJAJ, M., PANDEY, S. K., NAIN, T., BRAR, S. K., SINGH, P., SINGH S., WANGOO, N., andSHARMA, R.S., 2017. Stabilized cationic dipeptide capped gold/silver nanohybrids: Towards enhanced antibacterial and antifungal efficacy. Colloids Surf. B Biointerfaces 158: 397–407. https://doi.org/10.1016/j.colsurfb.2017.07.009
BANOEE, M, SEIF, S., NAZARI, Z.E. JAFARI FESHARAKI,P., SHAHVERDI,H.R, MOBALLEGH, A.K.M., and SHAHVERDI, A.R., 2010. ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J of Biomed Mater Res Part B: Appl Biomater 93:557–61. https://doi.org/10.1002/jbm.b.31615
BARAPATRE, A. K.R., and ADIL, H. J.H.A., 2016. Synergistic antibacterial and antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading fungus. Bioresources and Bioprocessing . Volume 3, article number 8. https://doi.org/10.1186/s40643-016-0083-y
BEHERA, P., KUTTY, M., SHARMA, B., KUMAR, A., and SAXENA, M., 2015. Cloning and sequencing of hfq (host factor required for synthesis of bacteriophage Q beta RNA) gene of Salmonella Typhimurium isolated from poultry. Veterinary World.;8: 2231-0916. https://doi.org/10.14202/vetworld.2015.610-614
BEZERRA, W. G. A., DA SILVA, I. N. G., VASCONCELOS, R. H., MACHADO, D. N., DE SOUZA LOPES, E., LIMA, S. V. G., TEIXEIRA, R. S., LIMA, J. B., OLIVEIRA, F. R., and MACIEL, W. C., 2016. Isolation and Antimicrobial Resistance of Escherichia coli and Salmonella enterica subsp. enterica (O: 6,8) in Broiler Chickens. Acta Scientiae Veterinariae, 44(1364): 1-7. http://dx.doi.org/10.22456/1679-9216.80957
CARDONA-CASTRO, N., RESTREPO-PINEDA, E., and CORREA- OCHOA, M., 2002. Detection of hilA gene sequences in serovars of Salmonella enteric subspecies enterica. Mem Inst Oswaldo Cruz. 97(8): 1153-1156. DOI: https://doi.org/10.1590/s0074-02762002000800016
CDC, 2023.Salmonella Outbreaks 2023: Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Food-borne, Waterborne, and Environmental Diseases (DFWED) https://www.cdc.gov/salmonella/outbreaks.html
CHANG, Y.N., ZHANG, M., XIA, L., ZHANG J., and XING, G. 2012. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials. 5:2850–71. https://doi.org/10.3390/ma5122850
DAVIN-REGLI A, BOLLA JM, JAMES CE, LAVIGNE JP, CHEVALIER J, GARNOTEL E, MOLITOR A, and PAGÈS J.M.,2008. Membrane permeability and regulation of drug "influx and efflux" in enterobacterial pathogens. Curr Drug Targets. Sep;9(9):750-9. https://doi.org/10.2174/138945008785747824
DROR-EHRE, A., MAMANE, H., BELENKOVA, T., MARKOVICH, G., and ADIN, A., 2009. Silver nanoparticle–E. coli colloidal interaction in water and effect on E. coli survival. J Colloid Interface Sci 339:521–526. https://doi.org/10.1016/j.jcis.2009.07.052
ELSHERIF, W.M., and ALI, D.N., 2020. Antibacterial effect of silver nanoparticles on antibiotic resistant E. coli O157:H7 isolated from some dairy products. Bulg J Vet Med, 23, No 4, 432−442.
FEYNMAN, R. 1991.There's plenty of room at the bottom. Science. 254:1300-1301.
GAST, R.K., 2008. Serotype-specific and serotype Airborne transmission of Salmonella enteritidis independent strategies for preharvest control of infection between groups of chicks in controlled food-borne Salmonella in poultry. Avian Dis., 51: environment isolation cabinets. Avian Dis., 42: 315- 817-828. https://doi.org/10.1637/8090-081807.1
GNANADHAS, D. P., MARATHE, S. A., and CHAKRAVORTTY, D., 2013. Biocides–resistance, cross-resistance mechanisms and assessment. Expert Opin Investig Drugs22: 191–206. (https://clsi.org/meetings/microbiology/ecofinder/)
HERIGSTAD,B.,M., HAMILTON, J., and HEERSINK, J., 2001. How to optimize the drop plate method for enumerating bacteria. J Microbiol Methods. 1;44 (2):121-9 https://doi.org/10.1016/s0167-7012(00)00241-4
HUANG, W., TSAI, L., LI, Y., HUA, N., SUN, C., WEI, C., ET AL., 2017. Widespread of horizontal gene transfer in the human genome. BMC Genomics. 18: 1–11. https://doi.org/10.1186/s12864-017-3649-y
HUTCHINGS, M., TRUMAN, A., and WILKINSON, B., 2019. Antibiotics: past, present and future. Curr. Opin. Microbiol.. 51 :72–80. https://doi.org/10.1016/j.mib.2019.10.008
IRAM, S., KHAN, J., A.,N., AMAN,AKHTAR, N., ZULFIQAR, Z.,and YAMEEN, M., A., 2016. Enhancing the Anti-Enterococci Activity of Different Antibiotics by Combining with Metal Oxide Nanoparticles. Jundishapur J Microbiol. 9(3): e31302. https://doi.org/10.5812/jjm.31302
JURY, K. L., VANCOV, T., STUETZ, R., M., and KHAN, S., J., 2010. Antibiotic resistance dissemination and sewage treatment plants. Appl. Microbiol. 1: 509–519. Available online at: https://www.researchgate.net/ publication/233427415_Antibiotic_resistancedissemination_and_sewage_treatment_plants (accessed ovember 28, 2022).
KABIR, S.M. 2010. Avian colibacillosis and salmonellosis: a closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. Int J Environ Res Public Health, 7(1): 89-114. https://doi.org/10.3390/ijerph7010089
KOURMOULI, A., VALENTI, M., VAN RIJN, E., BEAUMONT, H., J., KALANTZI, O.I., SCHMIDT-OTT, A., and BISKOS, G., 2018. Can disc diffusion susceptibility tests assess the antimicrobial activity of engineered nanoparticles? J Nanoparticle Res., 20, 1–6. https://doi.org/10.1007/s11051-018-4152-3
LEE, J., H., HUH, Y., M., JUN, Y., W., SEO, J., W., JANG, J., T., SONG, H., T., KIM, S., CHO, E.J., YOON, H., SUH, J., and CHEON, J., 2007. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13:95–99. 10.1038/nm1467. https://doi.org/10.1038/nm1467
LEE, N.Y., KO, W. C., and HSUEH, P.R., 2019. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front. Pharmacol. 10: 1–10. https://doi.org/10.3389/fphar.2019.01153
LIN-HUI, SU,and CHENG-HSUN CHIU. 2007. Salmonella: clinical importance and evolution of nomenclature, Chang Gung Med J;30 (3):210-9. https://pubmed.ncbi.nlm.nih.gov/17760271/
MANTZANA,P. E., PROTONOTARIOU, A. KASSOMENAKI, G. MELETIS, A. TYCHALA, E., KESKIL,I., ARHONT, M., KATSANOU, C., DAVITI, A., VASILAKI, O., KAGKALOU, G., and SKOURA , L., 2023. In vitro synergistic activity of antimicrobial combinations against carbapenem-and colistin-resistant acinetobacter baumannii and klebsiella pneumonia. Antibiotics, 12 (1): 93.https://doi.org/10.3390/antibiotics12010093
MEAKINS, S., FISHER, I.S., BERGHOLD, C., GERNER-SMID, P., TSCHÄPE, H., CORMICAN, M., LUZZI, I., SCHNEIDER, F., WANNETT, W., and COIA, J., 2008. Antimicrobial drug resistance in human nontyphoidal Salmonella isolates in Europe 2000–2004: a report from the Enter-net International Surveillance Network. Microb Drug Resist 14:31–35. https://doi.org/10.1089/mdr.2008.0777
MOHAMED, R. S. A., and BASIOUNI, R.S. 2017. Isolation and characterization of Salmonella Enteritidis and Salmonella Typhimurium from chicken meat in Egypt. Awad A ,11 (04): https://doi.org/10.3855/jidc.8043
MORONES, J. R., ELECHIGUERRA, J. L., CAMACHO, A., HOLT, K., KOURI, J. B., RAMÍREZ, J. T., YACAMAN, M. J., 2005. The bactericidal effect of silver nanoparticles. Nanotechnology. 16(10):2346-53. https://doi.org/10.1088/0957-4484/16/10/059
LOK, C.N.,HO, C.M.,CHEN, R., HE, Q.Y., UW, W.Y., SUN, H., TAM, P.K.H., CHIU, J.F., and CHE, C.M., 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924. https://pubs.acs.org/doi/10.1021/pr0504079
MASRI, M., BROWN, D.M., SMITH, D.G.E., STONE, V., and JOHNSTON, H., 2022. Comparison of In Vitro Approaches to Assess the Antibacterial Effects of Nanomaterials J. Funct. Biomater., 13(4), 255. https://doi.org/10.3390/jfb13040255
NATIONAL RESEARCH COUNCIL, INSTITUTE OF MEDICINE. 1998. The use of drugs in food animal: Benefits and risks. National Academy Press, Washington DC. https://doi.org/10.17226/5137
NILAVUKKARASI, M., VIJAYAKUMAR, S., and KUMAR, P.S., 2020. Biological synthesis and characterization of silver nanoparticles with Capparis zeylanica L. leaf extract for potent antimicrobial and antiproliferation efficiency. Mater. Sci. Energy Technol. 2020: 3:371–376. https://doi.org/10.1016/j.mset.2020.02.008
OK, C. N., HO, C. M., CHEN, R., HE QY, YU, W., SUN, H., TAM, P.K.H., CHIU, J. F., and CHE, C.M., 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924. https://doi.org/10.1021/pr0504079
PAL, S., TAK, Y.K., and SONG, J.M., 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720. https://doi.org/10.1128/aem.02218-06
PARAK, W.J., GERION, D., PELLEGRINO, T., ZANCHET, D., MICHEEL, C., WILLIAMS, C.S., BOUDREAU, R., LE, GROS, M.A., LARABELL, C.A., and ALIVISATOS, A.P., 2003. Biological applications of colloidal nanocrystals. Nanotechnology.14:15-27.https://iopscience.iop.org/article/10.1088/0957-4484/14/7/201/pdf
RAI, M.K., DESHMUKH, S., INGLE, A., and GADE, A., 2012. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 112, 841–852. https://doi.org/10.1111/j.1365-2672.2012.05253.x
SARWAR, S., SALEEM, S., SHAHZAD, F., and JAHAN, S., 2023. Identifying and elucidating the resistance of Staphylococcus aureus isolated from hospital environment to conventional disinfectants. Am J Infect Control.,51:178–183. https://doi.org/10.1016/j.ajic.2022.05.018
SILVER, S., LE PHUNG, T., and SILVER, G., 2006. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634. https://doi.org/10.1007/s10295-006-0139-7
SU, G., ZHANG, X., GIESY, J.P., MUSARRAT, J., SAQUIB, Q., ALKHEDHAIRY, A.A., and YU, H., 2015. Comparison on the molecular response profiles between nano zinc oxide (ZnO) particles and free zinc ion using a genome-wide toxico-genomics approach. Environ Sci Pollut Res Int. 22:17434–42. https://doi.org/10.1007/s11356-015-4507-6
TAJIK, S., TAHER, M.A., and BEITOLLAHI, H., 2014. Application of a new ferrocene derivative modified-graphene paste electrode for simultaneous determination of isoproterenol, acetaminophen and theophylline. Sensors and Actuators B., 197:228–236. https://doi.org/10.1016/j.snb.2014.02.096
VASSALLO, J., RICH, B., and HANDY, R., D., 2022. Exposure of Escherichia coli to cadmium telluride quantum dots, silver nanoparticles or cupric oxide nanoparticles during aerobic respiratory versus anaerobic fermentative growth on d-(+)-glucose†. Environmental Science Nano. 9, 3900. https://pubs.rsc.org/en/content/articlelanding/2022/en/d2en00403h
WANG YW, CAO A, JIANG Y, ZHANG X, LIU JH, LIU Y., and WANG, H., 2014. Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl Mater Interfaces. 6:2791–8. https://pubs.acs.org/doi/10.1021/am4053317
WEBBER, M., A., COLDHAM, N., G., WOODWARD, M., J., and PIDDOCK, L., J., V., 2008. Proteomic analysis of triclosan resistance in Salmonella enterica serovar Typhimurium. J. Antimicrob. Chemother., 62: 92–97. https://doi.org/10.1093/jac/dkn138
WITTE, 1998. National Research Council, Institute of Medicine. 1998; Barton.
ZHANG, Q, FAN, W, and GAO, L., 2007. AnataseTIO2 nanoparticles immobilized on ZnO tetrapods as a highly efficient and easily recyclable photocatalyst. Applied Catalysis B: Environmental;76: 168–173. https://doi.org/10.1016/j.apcatb.2007.05.024
ZHANG, Y., CHEN, Y., ZHANG, H., ZHANG, B., and LIU, J., 2013. Potent antibacterial activity of a novel silver nanoparticle-halloysite nanotube nanocomposite powder. J Inorg Biochem., 118:59–64. https://doi.org/10.1016/j.jinorgbio.2012.07.025
ZHANG, Y., WANG, L., XU, X., LI, F., and WU, Q., 2017. Combined systems of different antibiotics with nnano-CuO against Escherichia coli and the mechanisms involved. 2018. Nanomedicine, 13: 339–351. https://doi.org/10.2217/nnm-2017-0290
ZHAO, Y., and JIANG, X., 2013. Multiple strategies to activate gold nanoparticles as antibiotics. 2013. Nanoscale 5 :8340.https://doi.org/10.1039/c3nr01990j