• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Indexing and Abstracting
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of Applied Veterinary Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 10 (2025)
Issue Issue 2
Issue Issue 1
Volume Volume 9 (2024)
Volume Volume 8 (2023)
Volume Volume 7 (2022)
Volume Volume 6 (2021)
Volume Volume 5 (2020)
Volume Volume 4 (2019)
Volume Volume 3 (2018)
Volume Volume 2 (2017)
Volume Volume 1 (2016)
Attia, H., Mohamed, B., Alasmari, S., AbdelRahman, S., Aleraky, M., Alqahtani, A., Abd Elbaset, M., Fayed, H. (2025). Effect of Effervescent Formulation of Silymarin against Experimental Hepatotoxicity in Rats: Involvement of NRF2/HO-1, PI3K/AKT and TLR4/NFκB Pathways. Journal of Applied Veterinary Sciences, 10(2), 18-27. doi: 10.21608/javs.2025.348491.1503
Hany G. Attia; Bassim M.S.A. Mohamed; Saeed M. Alasmari; Sahar S. AbdelRahman; Mohamed Aleraky; Abdulwahab Alqahtani; Marawan Abd Elbaset; Hany M. Fayed. "Effect of Effervescent Formulation of Silymarin against Experimental Hepatotoxicity in Rats: Involvement of NRF2/HO-1, PI3K/AKT and TLR4/NFκB Pathways". Journal of Applied Veterinary Sciences, 10, 2, 2025, 18-27. doi: 10.21608/javs.2025.348491.1503
Attia, H., Mohamed, B., Alasmari, S., AbdelRahman, S., Aleraky, M., Alqahtani, A., Abd Elbaset, M., Fayed, H. (2025). 'Effect of Effervescent Formulation of Silymarin against Experimental Hepatotoxicity in Rats: Involvement of NRF2/HO-1, PI3K/AKT and TLR4/NFκB Pathways', Journal of Applied Veterinary Sciences, 10(2), pp. 18-27. doi: 10.21608/javs.2025.348491.1503
Attia, H., Mohamed, B., Alasmari, S., AbdelRahman, S., Aleraky, M., Alqahtani, A., Abd Elbaset, M., Fayed, H. Effect of Effervescent Formulation of Silymarin against Experimental Hepatotoxicity in Rats: Involvement of NRF2/HO-1, PI3K/AKT and TLR4/NFκB Pathways. Journal of Applied Veterinary Sciences, 2025; 10(2): 18-27. doi: 10.21608/javs.2025.348491.1503

Effect of Effervescent Formulation of Silymarin against Experimental Hepatotoxicity in Rats: Involvement of NRF2/HO-1, PI3K/AKT and TLR4/NFκB Pathways

Article 4, Volume 10, Issue 2, April 2025, Page 18-27  XML PDF (550.46 K)
Document Type: Original Article
DOI: 10.21608/javs.2025.348491.1503
View on SCiNiTO View on SCiNiTO
Authors
Hany G. Attia email 1; Bassim M.S.A. Mohamed email 2; Saeed M. Alasmari3; Sahar S. AbdelRahman4; Mohamed Aleraky5; Abdulwahab Alqahtani6; Marawan Abd Elbaset7; Hany M. Fayedorcid 8
1Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia
2Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, P.O. 12622 Bohouth St. Dokki, Egypt
3Department of Biology, College of Science and Arts, Najran University, Najran 1988, Saudi Arabia 4Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
4Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
5Department of Clinical Pathology, College of Medicine, Najran University, Najran 1988, Saudi Arabia
6Department of Pediatrics, College of Medicine, Najran University, Najran 1988, Saudi Arabia
7Pharmacology Department, National Research Center of Egypt
8Assistant professor of pharmacology, Medical Research and Clinical Studies Institute, National Research Centre (NRC), Dokki, Giza, Egypt
Receive Date: 08 January 2025,  Revise Date: 06 February 2025,  Accept Date: 18 February 2025 
Abstract
Despite the exploration of pharmaceutical and natural liver-protecting drugs, the number of hepatotoxicity deaths continues to rise. Milk thistle flavonoids, silymarin, have been widely investigated and demonstrated liver disease protection. Poor solubility and absorption restrict silymarin bioavailability. Effervescent formulations may boost silymarin absorption by improving gastrointestinal solubility. Our study compared the effectiveness of silymarin effervescent formulation in protecting the liver from thioacetamide (TAA)-induced oxidative damage at both low and high doses. Study findings may have an implication on chemotherapy-induced off-target harmful oxidative insult. 24 adult male rats were separated into normal control, hepatotoxic (TAA) (100 mg/kg body weight), and TAA plus silymarin (50 and 100 mg/kg b.wt) groups. Serum liver enzyme, hepatic antioxidant, lipid peroxidation, and inflammatory indicators were measured. The modest dose's great bioavailability was shown by its potency being identical to the doubled dose. TAA caused hepatic injury, as evidenced by elevated liver enzymes (ALT and AST) and tissue levels of MDA, TLR4, TGFβ1, TNF-α, IL-6, NF-κB, and p-NFκB. TAA also decreased tissue SOD, GSH, and HO-1 levels as well as Nrf2 level and expression. Increased gene expressions of Akt, PI3K, and TLR4 were observed. Silymarin's antioxidant and anti-inflammatory actions reduced hepatotoxicity via upregulating Nrf2/HO-1 and downregulating PI3K/Akt and TLR4/NFκB pathways. This study shows that effervescent silymarin formulation is a powerful bioavailable treatment for liver oxidative toxicity in chemotherapy-related toxicities.
Keywords
Chemotherapy; Nrf2/ HO-1; Oxidative Damage; PI3K/Akt; Silymarin effervescent formula; Thioacetamide; TLR4/ NFκB
Main Subjects
Pharmacology and toxicology
References
ABDEL-RAHMAN, R. F., FAYED, H. M., MOHAMED, M. A., HESSIN, A. F., ASAAD, G. F., ABDELRAHMAN, ‎S. S., SALAMA, A. A., ARBID, M. S., and OGALY, H. A., 2023. Apigenin role against thioacetamide-‎triggered liver fibrosis: Deciphering the PPARγ/TGF-β1/NF-κB and the HIF/FAK/AKT pathways. ‎Journal of Herbmed Pharmacology, 12: 202-213. https://doi.org/10.34172/jhp.2023.21

ABD EL-RAHMAN, S. S. and FAYED, H. M., 2019. Targeting AngII/AT1R signaling pathway by ‎perindopril inhibits ongoing liver fibrosis in rat. Journal of Tissue Engineering and Regenerative ‎Medicine, 13(12): 2131-2141..‎https://doi.org/10.1002/term.2940

ABDELBASET, M., SAFAR, M. M., MAHMOUD, S. S., NEGM, S. A., and AGHA, A. M., 2014. Red yeast ‎rice and coenzyme Q10 as safe alternatives to surmount atorvastatin-induced myopathy in ‎hyperlipidemic rats. Canadian Journal of Physiology and Pharmacology, 92: 481-489. https://doi.org/10.1139/cjpp-2013-0430

AHMAD, A., MUBARAK, N. M., JANNAT, F. T., ASHFAQ, T., SANTULLI, C., RIZWAN, M., NAJDA, A., BIN-‎JUMAH, M., ABDEL-DAIM, M. M., HUSSAIN, S., and ALI, S., 2021. A Critical Review on the Synthesis ‎of Natural Sodium Alginate Based Composite Materials: An Innovative Biological Polymer for ‎Biomedical Delivery Applications. Processes, 9(1). https://doi.org/10.3390/pr9010137

AHMAD, S., KHAN, J. A., KAUSAR, T. N., MAHNASHI, M. H., ALASIRI, A., ALQAHTANI, A. A., ALQAHTANI, T. ‎S., WALBI, I. A., ALSHEHRI, O. M., ELNOUBI, O. A., MAHMOOD, F., and SADIQ, A., 2023. Preparation, ‎Characterization and Evaluation of Flavonolignan Silymarin Effervescent Floating Matrix Tablets ‎for Enhanced Oral Bioavailability. Molecules, 28(6). https://doi.org/10.3390/molecules28062606

ARAUZ, J., RAMOS-TOVAR, E., and MURIEL, P., 2016. Redox state and methods to evaluate ‎oxidative stress in liver damage: From bench to bedside. Ann Hepatol, 15(2): 160-173.

AYOUB, I. M., EL-BASET, M. A., ELGHONEMY, M. M., BASHANDY, S. A. E., IBRAHIM, F. A. A., AHMED-‎FARID, O. A. H., EL GENDY, A. E.-N. G., AFIFI, S. M., ESATBEYOGLU, T., FARRAG, A. R. H., FARAG, M. A., ‎and ELSHAMY, A. I., 2022. Chemical Profile of Cyperus laevigatus and Its Protective Effects ‎against Thioacetamide-Induced Hepatorenal Toxicity in Rats. Molecules, 27: 6470.‎https://doi.org/10.3390/molecules27196470

BASHANDY, S. A. E., ABDELHAMEED, M. F., AHMED-FARID, O. A. H., MORSY, F. A., IBRAHIM, F. A. A., ‎and ELBASET, M., 2022. The Pivotal role of Cerium oxide nanoparticles in thioacetamide ‎induced hepatorenal injury in rat. Egyptian Journal of Chemistry, 65: 267-278.‎
https://doi.org/10.21608/ejchem.2022.115482.5242

BRUCK, R., AEED, H., AVNI, Y., SHIRIN, H., MATAS, Z., SHAHMUROV, M., AVINOACH, I., ZOZULYA, G., ‎WEIZMAN, N., and HOCHMAN, A., 2004. Melatonin inhibits nuclear factor kappa B activation and ‎oxidative stress and protects against thioacetamide induced liver damage in rats. J Hepatol, ‎‎40(1): 86-93. https://doi.org/10.1016/S0168-8278(03)00504-X

CENGIZ, M., OZENIRLER, S., and ELBEG, S., 2015. Role of serum toll-like receptors 2 and 4 in non-‎alcoholic steatohepatitis and liver fibrosis. J Gastroenterol Hepatol, 30(7): 1190-1196.
https://doi.org/10.1111/jgh.12924

CHEN, I. S., CHEN, Y.C., CHOU, C.H., CHUANG, R.F., SHEEN, L.Y., and CHIU, C.-H., 2012. ‎Hepatoprotection of silymarin against thioacetamide-induced chronic liver fibrosis. Journal of ‎the Science of Food and Agriculture, 92(7): 1441-1447. https://doi.org/10.1002/jsfa.4723

CHEN, T. M., SUBEQ, Y. M., LEE, R. P., CHIOU, T. W., and HSU, B. G., 2008. Single dose ‎intravenous thioacetamide administration as a model of acute liver damage in rats. Int J Exp ‎Pathol, 89(4): 223-231.‎
https://doi.org/10.1111/j.1365-2613.2008.00576.x

CICHOZ-LACH, H., and MICHALAK, A., 2014. Oxidative stress as a crucial factor in liver diseases. ‎World J Gastroenterol, 20(25): 8082-8091.‎https://doi.org/10.3748/wjg.v20.i25.8082

DELIRE, B., STARKEL, P., and LECLERCQ, I., 2015. Animal Models for Fibrotic Liver Diseases: What ‎We Have, What We Need, and What Is under Development. J Clin Transl Hepatol, 3(1): 53-66. ‎ https://doi.org/10.14218/JCTH.2014.00035

DELMAS, D., XIAO, J., VEJUX, A., and AIRES, V., 2020. Silymarin and Cancer: A Dual Strategy in ‎Both in Chemoprevention and Chemosensitivity. Molecules, 25(9).‎https://doi.org/10.3390/molecules25092009

DI COSTANZO, A., and ANGELICO, R., 2019. Formulation Strategies for Enhancing the Bioavailability ‎of Silymarin: The State of the Art. Molecules, 24(11).https://doi.org/10.3390/molecules24112155

ELBASET, M. A., MOHAMED, B. M. S. A., GAD, S. A., AFIFI, S. M., ESATBEYOGLU, T., ABDELRAHMAN, S. ‎S., and FAYED, H. M., 2023a. Erythropoietin mitigated thioacetamide-induced renal injury via ‎JAK2/STAT5 and AMPK pathway. Scientific Reports, 13: 14929. https://doi.org/10.1038/s41598-023-42210-1

ELBASET, M. A., MOHAMED, B. M. S. A., MOUSTAFA, P. E., MANSOUR, D. F., AFIFI, S. M., ESATBEYOGLU, ‎T., ABDELRAHMAN, S. S. M., and FAYED, H. M., 2023b. Erythropoietin Suppresses the Hepatic ‎Fibrosis Caused by Thioacetamide: Role of the PI3K/Akt and TLR4 Signaling Pathways. Oxidative ‎Medicine and Cellular Longevity, 2023: 1-14.‎https://doi.org/10.1155/2023/5514248

ELBASET, M. A., NASR, M., IBRAHIM, B. M. M., AHMED-FARID, O. A. H., BAKEER, R. M., HASSAN, N. S., ‎and AHMED, R. F., 2022. Curcumin nanoemulsion counteracts hepatic and cardiac ‎complications associated with high-fat/high-fructose diet in rats. Journal of Food Biochemistry‎‎. https://doi.org/10.1111/jfbc.14442

ELBASET, M. A., SALEM, R. S., AYMAN, F., AYMAN, N., SHABAN, N., AFIFI, S. M., ESATBEYOGLU, T., ‎ABDELAZIZ, M., and ELALFY, Z. S., 2022. Effect of Empagliflozin on Thioacetamide-Induced Liver ‎Injury in Rats: Role of AMPK/SIRT-1/HIF-1α Pathway in Halting Liver Fibrosis. Antioxidants, 11: ‎‎2152. https://doi.org/10.3390/antiox11112152

GILLESSEN, A., and SCHMIDT, H. H., 2020. Silymarin as Supportive Treatment in Liver Diseases: A ‎Narrative Review. Adv Ther, 37(4): 1279-1301. https://doi.org/10.1007/s12325-020-01251-y

HAJOVSKY, H., HU, G., KOEN, Y., SARMA, D., CUI, W., MOORE, D. S., STAUDINGER, J. L., and HANZLIK, R. ‎P., 2012. Metabolism and toxicity of thioacetamide and thioacetamide S-oxide in rat ‎hepatocytes. Chem Res Toxicol, 25(9): 1955-1963. ‎https://doi.org/10.1021/tx3002719

HAZEKI, K., NIGORIKAWA, K., and HAZEKI, O., 2007. Role of phosphoinositide 3-kinase in innate ‎immunity. Biol Pharm Bull, 30(9): 1617-1623.‎https://doi.org/10.1248/bpb.30.1617

HUSSEIN, R. M., SAWY, D. M., KANDEIL, M. A., and FARGHALY, H. S., 2021. Chlorogenic acid, ‎quercetin, coenzyme Q10 and silymarin modulate Keap1-Nrf2/heme oxygenase-1 signaling in ‎thioacetamide-induced acute liver toxicity. Life Sci, 277: 119460.‎https://doi.org/10.1016/j.lfs.2021.119460

JIA, C., ZHANG, Z., WANG, J., and NIE, Z., 2022. Silymarin protects the rats against paraquat-‎induced acute kidney injury via Nrf2. Human & Experimental Toxicology, 41: ‎‎09603271221074334. ‎https://doi.org/10.1177/09603271221074334

JIAO, F., ZHANG, Z., HU, H., ZHANG, Y., and XIONG, Y., 2022. SIRT6 Activator UBCS039 Inhibits ‎Thioacetamide-Induced Hepatic Injury In Vitro and In Vivo. Front Pharmacol., 13: 837544. ‎https://doi.org/10.3389/fphar.2022.837544

KIDD, L. B., SCHABBAUER, G. A., LUYENDYK, J. P., HOLSCHER, T. D., TILLEY, R. E., TENCATI, M., and ‎MACKMAN, N., 2008. Insulin activation of the phosphatidylinositol 3-kinase/protein kinase B ‎‎(Akt) pathway reduces lipopolysaccharide-induced inflammation in mice. J Pharmacol Exp ‎Ther, 326(1): 348-353. ‎https://doi.org/10.1124/jpet.108.138891

KIM, H. Y., KIM, J. K., CHOI, J. H., JUNG, J. Y., OH, W. Y., KIM, D. C., LEE, H. S., KIM, Y. S., KANG, S. S., ‎LEE, S. H., and LEE, S. M., 2010. Hepatoprotective effect of pinoresinol on carbon ‎tetrachloride-induced hepatic damage in mice. J Pharmacol Sci, 112(1): 105-112.‎https://doi.org/10.1254/jphs.09234FP

LAMIA, S. S., EMRAN, T., RIKTA, J. K., CHOWDHURY, N. I., SARKER, M., JAIN, P., ISLAM, T., GIAS, Z. T., ‎SHILL, M. C., and REZA, H. M., 2021. Coenzyme Q10 and Silymarin Reduce CCl4-Induced ‎Oxidative Stress and Liver and Kidney Injury in Ovariectomized Rats-Implications for ‎Protective Therapy in Chronic Liver and Kidney Diseases. Pathophysiology, 28(1): 50-63. ‎ https://doi.org/10.3390/pathophysiology28010005

LAWRENCE, T. 2009. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb ‎Perspect Biol, 1(6): https://doi.org/10.1101/cshperspect.a001651

MANNA, S. K., MUKHOPADHYAY, A., VAN, N. T., and AGGARWAL, B. B., 1999. Silymarin suppresses ‎TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis. J Immunol, ‎‎163(12): 6800-6809. https://doi.org/10.4049/jimmunol.163.12.6800

MOHAMED, M. Z., and HAFEZ, H. M., 2019. PI3K/Akt and Nrf2/HO-1 pathways involved in the ‎hepatoprotective effect of verapamil against thioacetamide toxicity in rats. 38(4): 381-388. ‎ ‎https://doi.org/10.1177/0960327118817099

MOUSSA, S. A. A., IBRAHIM, F. A. A., ELBASET, M. A., AZIZ, S. W., ABDELLATIF, N. A., ATTIA, A. M., EL ‎TOUMY, S. A., SALIB, J. Y., and BASHANDY, S. A. E., 2022. Efficacy of goldenberry extract in ‎chelated iron overload induced by obesity: Novel safety concept for the treatment of iron ‎overloads diseases. Journal of Applied Biology and Biotechnology, 10: 92-100. ‎https://doi.org/10.7324/JABB.2022.100413

OGALY, H. A., ABDEL-RAHMAN, R. F., MOHAMED, M. A. E., O, A. A., KHATTAB, M. S., and ABD-‎ELSALAM, R. M., 2022. Thymol ameliorated neurotoxicity and cognitive deterioration in a ‎thioacetamide-induced hepatic encephalopathy rat model; involvement of the BDNF/CREB ‎signaling pathway. Food Funct, 13(11): 6180-6194.https://doi.org/10.1039/D1FO04292K

PALLOTTINI, V., MARTINI, C., BASSI, A. M., ROMANO, P., NANNI, G., and TRENTALANCE, A., 2006. Rat ‎HMGCoA reductase activation in thioacetamide-induced liver injury is related to an increased ‎reactive oxygen species content. J Hepatol, 44(2): 368-374. https://doi.org/10.1016/j.jhep.2005.06.011

RAMADAN, A., AFIFI, N., YASSIN, N. Z., ABDEL-RAHMAN, R. F., ABD EL-RAHMAN, S. S., and FAYED, H. ‎M., 2018. Mesalazine, an osteopontin inhibitor: The potential prophylactic and remedial roles ‎in induced liver fibrosis in rats. Chemico-Biological Interactions, 289: 109-118.‎https://doi.org/10.1016/j.cbi.2018.05.002

RASLAN, M., ABDEL RAHMAN, R., FAYED, H., OGALY, H., and FIKRY, R., 2021. Metabolomic Profiling ‎of Sansevieria trifasciata hort ex. Prain Leaves and Roots by HPLC-PAD-ESI/MS and its ‎Hepatoprotective Effect via Activation of the NRF2/ARE Signaling Pathway in an Experimentally ‎Induced Liver Fibrosis Rat Model. Egyptian Journal of Chemistry, 64(11): 6647-6671.‎https://doi.org/10.21608/ejchem.2021.78970.3877

SALLER, R., MEIER, R., and BRIGNOLI, R., 2001. The use of silymarin in the treatment of liver ‎diseases. Drugs, 61(14): 2035-2063.‎https://doi.org/10.2165/00003495-200161140-00003

SARMA, D., and HANZLIK, R. P., 2011. Synthesis of carbon-14, carbon-13 and deuterium labeled ‎forms of thioacetamide and thioacetamide S-oxide. J Labelled Comp Radiopharm, 54(13): 795-‎‎798. https://doi.org/10.1002/jlcr.1933

SHIRANI, K., YOUSEFSANI, B. S., SHIRANI, M., and KARIMI, G., 2020. Protective effects of naringin ‎against drugs and chemical toxins induced hepatotoxicity: A review. 34(8): 1734-1744. https://doi.org/10.1002/ptr.6641

TALEB, S. A. A., ISMAIL, S. A., MOHAMED, M., MOURAD, R. M., and EL-HASHEMY, H. A., 2023. ‎Promising synthesized bis (arylmethylidene) acetone -polymeric PCL emulsified nanoparticles ‎with enhanced antimicrobial/antioxidant efficacy: in-vitro and in-vivo evaluation. OpenNano, ‎‎11: 100139. ‎https://doi.org/10.1016/j.onano.2023.100139

TEKSOY, O., CENGIZ, M., KOROGLU, E., SAHINTÜRK, V., INAL, B., KACAR, S., and AYHANCI, A., 2020. ‎Hepatoprotective effect of silymarin against thioacetamide induced hepatic injury in rats.‎ Applied Biochemistry and Biotechnology, 191:528–539.

TROUTMAN, T. D., BAZAN, J. F., and PASARE, C., 2012. Toll-like receptors, signaling adapters and ‎regulation of the pro-inflammatory response by PI3K. Cell Cycle, 11(19): 3559-3567.https://doi.org/10.4161/cc.21572

TSAI, J. H., LIU, J. Y., WU, T. T., HO, P. C., HUANG, C. Y., SHYU, J. C., HSIEH, Y. S., TSAI, C. C., and LIU, Y. ‎C. 2008. Effects of silymarin on the resolution of liver fibrosis induced by carbon tetrachloride ‎in rats. Journal of Viral Hepatitis, 15(7): 508-514. ‎https://doi.org/10.1111/j.1365-2893.2008.00971.x

VARGAS-MENDOZA, N., MADRIGAL-SANTILLÁN, E., MORALES-GONZÁLEZ, A., ESQUIVEL-SOTO, J., ESQUIVEL-‎CHIRINO, C., GARCÍA-LUNA, Y. G.-R. M., GAYOSSO-DE-LUCIO, J. A., and MORALES-GONZÁLEZ, J. A., 2014. ‎Hepatoprotective effect of silymarin. World J Hepatol, 6(3): 144-149.‎ https://doi.org/10.4254/wjh.v6.i3.144

WANG, W., GUAN, C., SUN, X., ZHAO, Z., LI, J., FU, X., QIU, Y., HUANG, M., JIN, J., and HUANG, Z., ‎‎2016. Tanshinone IIA protects against acetaminophen-induced hepatotoxicity via activating ‎the Nrf2 pathway. Phytomedicine, 23(6): 589.https://doi.org/10.1016/j.phymed.2016.02.022

WU, J. W., LIN, L. C., and TSAI, T. H., 2009. Drug-drug interactions of silymarin on the perspective ‎of pharmacokinetics. J Ethnopharmacol, 121(2): 185-193.‎https://doi.org/10.1016/j.jep.2008.10.036

XU, J., ZHANG, X., MONESTIER, M., ESMON, N. L. and ESMON, C. T., 2011. Extracellular histones are ‎mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol, 187(5): 2626-‎‎2631. https://doi.org/10.4049/jimmunol.1003930

XU, X., HU, Y., ZHAI, X., LIN, M., CHEN, Z., TIAN, X., ZHANG, F., GAO, D., MA, X., LV, L. and YAO, J., ‎‎2013. Salvianolic acid A preconditioning confers protection against concanavalin A-induced liver ‎injury through SIRT1-mediated repression of p66shc in mice. Toxicol Appl Pharmacol, 273(1): ‎‎68-76.‎
https://doi.org/10.1016/j.taap.2013.08.021

ZAHIN, N., ANWAR, R., TEWARI, D., KABIR, M. T., SAJID, A., MATHEW, B., UDDIN, M. S., ALEYA, L. and ‎ABDEL-DAIM, M. M., 2020. Nanoparticles and its biomedical applications in health and diseases: ‎special focus on drug delivery. Environ Sci Pollut Res Int, 27(16): 19151-19168. ‎https://doi.org/10.1007/s11356-019-05211-0

ZHAI, K.-F., DUAN, H., CAO, W.-G., GAO, G.-Z., SHAN, L.-L., FANG, X.-M. and ZHAO, L., 2016. ‎Protective effect of Rabdosia amethystoides (Benth) Hara extract on acute liver injury induced ‎by Concanavalin A in mice through inhibition of TLR4-NF-κB signaling pathway. Journal of ‎Pharmacological Sciences, 130(2): 94-100. https://doi.org/10.1016/j.jphs.2015.12.006

Statistics
Article View: 248
PDF Download: 210
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.