ABDUL-ABASS, M. H., and ALMRSOMI, T. S., 2014. Effect of substitution of treated Rice bran for the yellow corn on the performance of laying hens. Iraqi J. Agric. Sci., 45: 575-535.
http://dx.doi.org/10.13140/RG.2.2.29872.23049
ADERIBIGBE, T. A., ATTEH, J. O., and OKUKPE, K. M., 2018. Microbial modulating effect of xylanase enzyme-supplemented rice husk on the gastrointestinal tract of broiler chickens. Nig. J. Anim. Prod., 45(4):135 – 148.
https://doi.org/10.51791/njap.v45i4.467
ALEWI, M., EDEA, C., DEMEKE, S., and TESFAYE, E., 2022. Effect of different levels of rice (
Oryza sativa) bran on the growth performance of broiler chicken. Greener Journal of Agricultural Sciences, 12: 120-30.
https://gjournals.org/gjas
ALSHUKRI, A. Y., ALMRSOMI, T. S., AREAAER, A. H., and ALFARTOSI, K. A., 2016. Effect of partial substitution of rice bran for the yellow corn (maize) on broiler performance. Inter. Sci. Res., 5: 2003-2006.
https://doi.org/10.21931/rb/2023.08.04.85
AL-TAYYAR, I. S., and ALMRSOMI and T. S., 2022. The growth parameters response of broiler chicks fed partial replacement of rice bran for the yellow corn. Al-Qadisiyah J. Agric. Sci. (QJAS), 12, 1: pp. 93-97.
https://doi.org/10.33794/qjas.2022.133555.1038
ANI, A., KALU, I., UGUWUOWO, L., and IIOH, E., 2013. Dietary effect of rice Milling waste and supplementary enzyme on performance of broiler chicks. Nsuka Afric. J. Biotechnol.,12(34):5326-5332.
https://doi.org/10.5897/AJB2013.12900
ATTIA, Y. A., ASHOUR, E. A., NAGADI, S. A., FARAG, M. R., BOVERA, F., and ALAGAWANY, M., 2023. Rice bran as an alternative feedstuff in broiler nutrition and impact of Liposorb® and vitamin E-Se on sustainability of performance, carcass traits, blood biochemistry, and antioxidant indices. Vet. Sci., 10(4):299.
https://doi.org/10.3390/vetsci10040299
ATTIA, Y. A., ALDHALMI, A. K., YOUSSEF, I. M., BOVERA, F., TUFARELLI, V., ABD EL‑HACK, M. E., EL‑KHOLY, K. H., and SHUKRY, M., 2024. Climate change and its effects on poultry industry and sustainability. Discover Sustainability, 5:397 |
https://doi.org/10.1007/s43621-024-00627-2.
AWAD, A. L., HUSSEIN, M. A. A., GHONIM, A. I. A., KASIM, M. G., and HUMODA, I. A. A., 2009. Effect of using rice bran in Domyati ducklings dies on growth performance and carcass quality. Egypt. Poult. Sci., 29: 173-189.
http://dx.doi.org/10.13140/RG.2.2.26154.18883
BAREKATAIN, M. R., ANTIPATIS, C., CHOCT, M., and PA, I. J. I., 2013. Interaction between protease and xylanase in broiler chicken diets containing sorghum distillers’ dried grains with solubles. Anim. Feed Sci. Technol., 182: 71-81.
https://doi.org/10.1016/j.anifeedsci.2013.04.002
CHEN, X., YANG, H., and WANG, Z., 2019. The effect of different dietary levels of defatted rice bran on growth performance, slaughter performance, serum biochemical parameters, and relative weights of the viscera in geese. Anim. J., 9: 1-8.
https://doi.org/10.3390/ani9121040
CHESSON, A. 2001. Non-starch polysaccharide degrading enzymes in poultry diets: Influence of ingredients on the selection of activities. Worlds Poult. Sci. J. 57: 251–263.
https://doi.org/10.1079/WPS20010018
CHOCT, M., KOCHER, A., WATERS, D. L. E., PETTERSSON, D., and ROSS, G., 2004. A comparison of three xylanases on the nutritive value of two wheats for broiler chickens. Br. J. Nutr., 92: 53–61.
https://doi.org/10.1079/bjn20041166
CICERO, A. F., and DEROSA, G., 2005. Rice bran and its main components: potential role in the management of coronary risk factors. Current Topics Nut. Res. J., 3: 29-46.
https://doi.org/10.12691/jfnr-7-3-8
COWIESON, A. J., BEDFORD, M.R., and RAVINDRAN, V., 2010. Interactions between xylanase and glucanase in maize-soy-based diets for broilers. Br. Poult. Sci., 51(2):246–57.
https://doi.org/10.1080/00071661003789347
DENIZ, G., ORHAN, F., GENCOGLU, H., EREN, M., GEZEN, S. S., and TURKMEN, I. I., 2007. Effects of different levels of rice bran with and without enzyme on performance and size of the digestive organs of broiler chickens. Revue Méd. Vét., 2007, 158, 7, 336-343.
https://hdl.handle.net/11452/40342
DONKOH, A., and ZANU, H. K., 2010. Development of feed package for layers using low energy agro-industrial by products. Afric. J. Agric. Res., 5 (20): 2782–2786.
https://doi.org/10.5897/AJAR.9000168
EL-GHAMRY, A. A., AL-HARTHI, M. A., and ATTIA, Y. A., 2005. Possibility to improve rice polishing utilisation in broiler diets by enzymes or dietary formulation based on digestible amino acids. Arch Geflugelk, 69:49-56. Available at:
https://api.semanticscholar.org/CorpusID:67792685
EL-SANHOURY, M. H. S., AHMED, A. M. H., and EL-FAHAM, A. I., 2017. Protein sources and/or enzymes effects on broiler performance and physiological status. Egypt. J. Nutr. Feeds, 20 (2): 321-333.
https://doi.org/10.21608/ejnf.2017.75217
FAN, L., HUANG, R., WU, C., CAO, Y., DU, T., PU, G., WANG, H., ZHOU, W., LI, P., and KIM, S. W., 2020. Defatted rice bran supplementation in diets of finishing pigs: effects on physiological, intestinal barrier, and oxidative stress parameters. Anim. J., 499:1-12.
https://doi.org/10.3390/ani10030449
GAO, F., JIANG, Y., ZHOU, G. H., and HAN, Z. K., 2007. The effects of xylanase supplementation on growth, digestion, circulating hormone and metabolite levels, immunity and gut microflora in cockerels fed on wheat-based diets. Brit. Poult. Sci., 48: 480-488.
https://doi.org/10.3390/ani10030449
HAFEZ, M. H. and ATTIA, Y. A., 2020. Challenges to the poultry industry: Current perspectives and strategic future after the COVID-19 outbreak. Front. Vet. Sci., 7: 516.
https://doi.org/10.3389/fvets.2020.00516
HONG, J. C., STEINER, T., AUFY, A., and LIEN, T. F., 2012. Effects of supplemental essential oil on growth performance, lipid metabolites and immunity, intestinal characteristics, microbiota and carcass traits in broilers. Livest. Sci., 144: 253–262.
https://doi.org/10.1016/j.livsci.2011.12.008
INAYAH, S. R., MUTIA, R., JAYANEGARA, A., YANZA, Y. R., and AMNAH, S., 2022. Effects of xylanase supplementation on the performance, nutrient digestibility, and digestive organ profiles of broiler chickens: A Meta-analysis. J. World Poult. Res., 12 (3): 199-211.
https://dx.doi.org/10.36380/jwpr.2022.23
JHA, R., FOUHSE, J. M., TIWARI, U. P., LI, L., and WILLING, B. P., 2019. Dietary fiber and intestinal health of monogastric animals. Front. Vet. Sci., 6: 48.
https://doi.org/10.3389/fvets.2019.00048
KAMBOH, A. A., ARAIN, M. A., MUGHA, L. M. J., ZAMAN, A., ARAIN, Z. M., and SOOMRO, A. H., 2015. Flavonoids: Health promoting phytochemicals for animal production – A review. J. Anim. Health Prod., 3: 6–13.
http://dx.doi.org/10.14737/journal.jahp/2015/3.1.6.13
MEDGU, C. I., RAJI, A. O., IGWEBUIKE, J. U., and BARWA, E., 2011. Alternative cereal grains and cereal by1601 products as sources of energy in poultry diets- A review. Research Opinions in Animal Veterinary 1602 Sciences 1:530–542.
http://dx.doi.org/10.22271/veterinary.2023.v8.i6a.795
MOFTAKHARZADEH, S. A., JANMOHAMMADI, H., TAGHIZADEH, A., KIANFAR, R., and OLYAYEE, M. G., 2019. Effect of enzyme addition on energy utilization and performance of broiler chickens fed wheat-based diet with different metabolizable energy levels. Acta Scientiarum. Anim. Sci., 41: e44585.
https://doi.org/10.4025/actascianimsci.v41i1.44585
PARVEEN, R., ASGHAR, A., ANJUM, F. M., KHAN, M. I., ARSHAD, M. S., and YASMEEN, A., 2013. Selective deposition of dietary alpha-lipoic acid in mitochondrial fraction and its synergistic effect with alpha-tocoperhol acetate on broiler meat oxidative stability. Lipids in Health and Diseases, 12:52.
https://doi.org/10.1186/1476-511x-12-52
SARICA, S., CIFTCI, A., DEMIR, E., KILINC, K., and YILDIRIM, Y., 2005. Use of an antibiotic growth promoter and two herbal natural feed additives with and without exogenous enzymes in wheat-based broiler diets. South Afric. J. Anim. Sci., 35: 61-72.
https://doi.org/10.4314/sajas.v35i1.4050
SAS. 2004. Statistical Analysis System, User's Guide. Statistical. Version 7th ed. SAS. Inst. Inc. Cary. N.C. USA
SHAHEEN, M., AHMAD, I., ANJUM, F. M., SYED, Q. A., and SAEED, M. K., 2015. Effect of processed Rice bran on growth performance of broiler chicks from Pakistan. Bulgarian J. Agric. Sci., 21: 440–445. Available at:
https://api.semanticscholar.org/CorpusID:7549426
SINGH, A. K., and KIM, W. K., 2021. Effects of dietary fiber on nutrients utilization and gut health of poultry: a review of challenges and opportunities. Anim., 11:181.
https://doi.org/10.3390/ani11010181
SINGH, A. K., BERROCOSO, J. D., DERSJANT-LI, Y., AWATI, A., and JHA, R., 2017. Effect of a combination of xylanase, amylase and protease on growth performance of broilers fed low and high fiber diets. Anim. Feed Sci. Technol., 232: 16 20.
https://doi.org/10.1016/j.anifeedsci.2017.07.012
SURAI, P. F. 2014. Polyphenol compounds in the chicken/animal diet: from the past to the future. J. Anim. Physiol. Anim. Nutr., 98: 19– 31.
https://doi.org/10.1111/jpn.12070
WIZNA, H., ABBAS, Y., RIZAL, A., DJULARDI, A., and MUIS, H., 2012. The effect of supplementation of micro nutrient on nutrient rice bran which fermented by Bacillus amyloliquefaciens. Pak. J. Nutr., 11:439–443.
https://doi.org/10.3923/pjn.2012.439.443
WU, D., CHOCT, M., WU, S. B., LIU, Y. G., and SWICK, R. A., 2017. Carbohydrase enzymes improve performance of broilers fed both nutritionally adequate and marginal wheat-based diets. J. Appl. Anim. Nutr., 5, 1-7.
https://doi.org/10.1017/jan.2017.5
YASIN, M., ASGHAR, A., ANJUM, F., BUTT, M., KHAN, M., and ARSHAD, M., 2012. Oxidative stability enhancement of broiler bird meats with a-lipoic acid and α-tocopherol acetate supplemented feed. Food Chem., 131: 768–773.
https://doi.org/10.1016/j.foodchem.2011.09.031
ZHOU, Y., JIANG, Z., LV, D., and WANG, T., 2009. Improved energy-utilizing efficiency by enzyme preparation supplement in broiler diets with different metabolizable energy levels. Poult. Sci., 88(2): 316-322.
https://doi.org/10.3382/ps.2008-00231