• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Indexing and Abstracting
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of Applied Veterinary Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 10 (2025)
Issue Issue 2
Issue Issue 1
Volume Volume 9 (2024)
Volume Volume 8 (2023)
Volume Volume 7 (2022)
Volume Volume 6 (2021)
Volume Volume 5 (2020)
Volume Volume 4 (2019)
Volume Volume 3 (2018)
Volume Volume 2 (2017)
Volume Volume 1 (2016)
Baiomy, F., Kamel, A., Hussein, A., Hassanin, S. (2025). The Impact of Maturation Medium Supplemented with PMSG and HCG Hormones on In vitro Maturation of Ovine Oocytes. Journal of Applied Veterinary Sciences, 10(1), 81-91. doi: 10.21608/javs.2024.335751.1464
Fatma M. Baiomy; Ahmed M. Kamel; Abdelhadi F. Hussein; Sabry Hemida Hassanin. "The Impact of Maturation Medium Supplemented with PMSG and HCG Hormones on In vitro Maturation of Ovine Oocytes". Journal of Applied Veterinary Sciences, 10, 1, 2025, 81-91. doi: 10.21608/javs.2024.335751.1464
Baiomy, F., Kamel, A., Hussein, A., Hassanin, S. (2025). 'The Impact of Maturation Medium Supplemented with PMSG and HCG Hormones on In vitro Maturation of Ovine Oocytes', Journal of Applied Veterinary Sciences, 10(1), pp. 81-91. doi: 10.21608/javs.2024.335751.1464
Baiomy, F., Kamel, A., Hussein, A., Hassanin, S. The Impact of Maturation Medium Supplemented with PMSG and HCG Hormones on In vitro Maturation of Ovine Oocytes. Journal of Applied Veterinary Sciences, 2025; 10(1): 81-91. doi: 10.21608/javs.2024.335751.1464

The Impact of Maturation Medium Supplemented with PMSG and HCG Hormones on In vitro Maturation of Ovine Oocytes

Article 9, Volume 10, Issue 1, January 2025, Page 81-91  XML PDF (442.41 K)
Document Type: Original Article
DOI: 10.21608/javs.2024.335751.1464
View on SCiNiTO View on SCiNiTO
Authors
Fatma M. Baiomyorcid 1; Ahmed M. Kamel email orcid 2; Abdelhadi F. Hussein1; Sabry Hemida Hassanin1
1Animal Production Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
2Department of Animal and Poultry Physiology, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
Receive Date: 11 November 2024,  Revise Date: 11 December 2024,  Accept Date: 16 December 2024 
Abstract
This investigation aimed to assess the dose-dependent impact of the pregnant mare serum gonadotropin (PMSG) on the in vitro maturation of sheep oocytes and the effect of combining the best dose with the human chorionic gonadotropin (hCG), which is a cost-effective substitute for FSH and LH hormones. The study was planned as two experiments that included 1134 oocytes to study the impact of varying concentrations (0, 10, 20, and 40 IU/mL) of PMSG addition (1st experiment) as well as the influence of hCG, PMSG, or their combination (2nd experiment) on the ovine’s oocyte in vitro. The experimental groups of the 2nd experiment were control (G1), 20 IU/mL hCG (G2), 20 IU/mL PMSG (G3), and 20 IU/mL PMSG plus 20 IU/mL hCG (G4). The first experiment demonstrated that the polar body (PB) rate was increased (P < 0.01) by all treated groups, being 13.33, 17.76, and 15.70 in G2, G3, and G4 versus 9.87% in G1, respectively. The mitochondrial fluorescent intensity recorded 7.61, 11.92, 12.43, and 12.35, while the lipid fluorescent intensity was 9.88, 29.98, 40.05, and 25.66 for G1, G2, G3, and G4, respectively, being higher (P < 0.05) in treatment groups than in the control one. The results of the 2nd experiment showed that the PB extrusion was higher (P < 0.01) in G2, G3, and G4 than in G1 (12.60, 14.91, and 14.75 vs. 6.92%, respectively). The mitochondrial fluorescent intensity recorded 8.82, 12.30, 17.58, and 13.36 for G1, G2, G3, and G4, respectively. The lipid fluorescent intensity was 10.16, 6.98, 13.83, and 49.68 for G1, G2, G3, and G4, respectively. In conclusion, the addition of PMSG and hCG to sheep oocyte maturation media improved the oocyte maturation.
Keywords
hCG; IVM; Oocytes; PMSG; Sheep
Main Subjects
Physiology
References
AARDEMA, H., VOS, P.L.A.M., LOLICATO, F., ROELEN, B.A.J., KNIJN, H.M., VAANDRAGER, A.B., HELMS, J.B., and GADELLA, B.M., 2011. Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence1 Biology of Reproduction. 85, 62–69. https://doi.org/10.1095/biolreprod.110.088815.

ABDELKHALEK, A.S., GHANEM, N., SOLIMAN, M.G., EL NAGA, N.A.A., KAMEL, A.M., SHEDEED, H.A., and El BAHRAWY, K.A., 2024. Evaluation of epididymal and frozen sperm to produce goat embryos through in vitro fertilization. Journal of the Indonesian Tropical Animal Agriculture. 49(2):108-116. DOI: 10.14710/jitaa.49.2. 108-116.

ACCARDO, C., DATTENA, M., PILICHI, S., MARA, L., CHESSA, B., and CAPPAI, P., 2004. Effect of recombinant human FSH and LH on in vitro maturation of sheep oocytes; embryo development and viability. Animal reproduction science, 81(1-2), 77-86.‏ https://doi.org/10.1016/j.anireprosci.2003.10.004

ALAM, M. H., and MIYANO, T., 2020. Interaction between growing oocytes and granulosa cells in vitro. Reproductive medicine and biology, 19(1), 13-23.‏  https://doi.org/10.1002/rmb2.12292

ALI, A., and SIRARD, M. A., 2005. Protein kinases influence bovine oocyte competence during short-term treatment with recombinant human follicle stimulating hormone. Reproduction, 130(3), 303-310.‏ https://doi.org/10.1530/rep.1.00387

Arroyo, A., Kim, B., and Yeh, J., 2020. Luteinizing hormone action in human oocyte maturation and quality: signaling pathways, regulation, and clinical impact. Reproductive Sciences, 27(6), 1223-1252.‏ https://doi.org/10.1007/s43032-019-00137-x

BASTOS, B. D. M., SILVA, N. D. S., GONÇALVES, P. R., CÂNDIDO, A. E. C. M., BARBERINO, R. D. S., DO MONTE, A. P. O., and LOPES JÚNIOR, E. S., 2022. Effect of different gonadotropins on in vitro maturation of sheep oocytes.‏ https://org/10.5433/1679-0359.2022v43n6p2731

BILODEAU-GOESEELS, S., and MAGYARA, N., 2012. The control of meiotic arrest and resumption in mammalian oocytes. In Meiosis-Molecular Mechanisms and Cytogenetic Diversity. IntechOpen.‏ https://doi.org/10.5772/30154 

BOTIGELLI, R. C., RAZZA, E. M., PIOLTINE, E. M., and NOGUEIRA, M. F. G., 2017. New approaches regarding the in vitro maturation of oocytes: manipulating cyclic nucleotides and their partners in crime. JBRA Assisted Reproduction, 21(1), 35.‏ doi: 10.5935/1518-0557.20170010

BYSKOV, A. G., ANDERSEN, C. Y., HOSSAINI, A., and GUOLIANG, X., 1997. Cumulus cells of oocyte‐cumulus complexes secrete a meiosis‐activating substance when stimulated with FSH. Molecular Reproduction and Development: Incorporating Gamete Research, 46(3),296-305.‏ https://doi.org/10.1002/(SICI)1098-2795(199703)

CAMARGO, L.S.A., VIANA, J.H.M., SA, W.F., FERREIRA, A.M., RAMOS, A.A., and FILHO, V.R.V., 2006. Factors influencing in vitro embryo production. Animal Reproduction Science., 3: 19–28.

CHEN, J., CHI, M. M., MOLEY, K. H., and DOWNS, S. M., 2009. cAMP pulsing of denuded mouse oocytes increases meiotic resumption via activation of AMP-activated protein kinase. Reproduction (Cambridge, England), 138(5), 759.‏  doi: 10.1530/REP-08-0535

DE FRUTOS, C., VICENTE-PEREZ, R., and ROSS, P. J., 2014. 172 determining the requirements for lh and fsh during sheep in vitro oocyte maturation. Reproduction, Fertility and Development, 26(1), 200-200.‏ https://doi.org/10.1071/RDv26n1Ab172

DE LIMA, C. B., BARBOSA, G. Z., ISPADA, J., DOS SANTOS, E. C., and MILAZZOTTO, M. P., 2023. Lipid availability during in vitro maturation alters oocyte lipid content and blastocyst development and metabolism. Reproduction in Domestic Animals, 58(7), 920-928.‏ https://doi.org/10.1111/rda.14367

DEL COLLADO, M., DA SILVEIRA, J. C., SANGALLI, J. R., ANDRADE, G. M., SOUSA, L. R., DA, S., SILVA, L. A., MEIRELLES, F. V., and PERECIN, F., 2017. Fatty acid binding protein 3 and transzonal projections are involved in lipid accumulation during in vitro maturation of bovine oocytes. scientific reports. 7, 1–13. https://doi.org/10.1038/s41598-017- 02467-9.

DINOPOULOU, V., DRAKAKIS, P., KEFALA, S., KIAPEKOU, E., BLETSA, R., ANAGNOSTOU, E., KALLIANIDIS, K., and LOUTRADIS, D., 2016. Effect of recombinant-LH and hCG in the absence of FSH on in vitro maturation (IVM) fertilization and early embryonic development of mouse germinal vesicle (GV)-stage oocytes. Biology Of Reproduction. 16(2): 138-146. https:// doi.org/10.1016/j.repbio.2016.01.004

DUNNING, K. R., and ROBKER, R. L., 2018. The role of L-carnitine during oocyte in vitro maturation: essential co-factor? Animal Reproduction (AR), 14(3), 469-475.‏ http://dx.doi.org/10.21451/1984-3143-AR988

EL-SAYED, A., ASHOUR, G., KAMEL, A. M., and El-BAHRAWY, K. A., 2015. Assessment of embryo production of dromedary (Camelus dromedarius) using two semen sources and two in vitro fertilization techniques. The Egyptian Society of Animal Production; 52:153–60.

ELSHAZLY, A. G., and YOUNGS, C. R., 2019. Feasibility of utilizing advanced reproductive technologies for sheep breeding in Egypt. Part 1. Genetic and nutritional resources. Egyptian Journal of Sheep and Goats Sciences, 14(1), 39-52. DOI: 10.21608/ejsgs.2019.33235‏

EPPIG, J. J., and DOWNS, S. M., 1988. Maintenance of oocyte meiotic arrest and the induction of oocyte maturation in mammals. Journal of Animal Science, 66 (suppl_2), 50-53.‏ https://doi.org/10.1093/ansci/66.suppl_2.50

FAO. 2023. World Food and Agriculture Statistical Yearbook 2023. https://www.fao.org/about/who-we-are/departments/statistics-division

FARAG, I. M., GIRGIS, S. M., KHALIL, W. K. B., HASSAN, N. H. A., SAKR, A. A. M., ABD ALLAH, S. M., and ALI, N. I., 2009. Effect of hormones, culture media and oocyte quality on in vitro maturation of Egyptian sheep oocytes. Journal of Applied Bioscience 24: 1520–34.

FERRÉ, L. B., KJELL, M. E., STRØBECH, L.B., HYTTEL, P., MERMILLOD, P., and ROSS, P. J., 2020. Recent advances in bovine in vitro embryo production. reproductive biotechnology history and methods Animal, 14 (5): 991–1004. https://doi.org/10.1017/S1751731119002775

GABR, A. A., SHALABY, N. A., and GABR, M. E., 2016. Effect of ewe born type, growth rate and weight at conception on the ewe subsequent productivity of Rahmani sheep. Asian J. Anim. Vet. Adv., 11: 732- 736. DOI:10.3923/ajava.2016.732.736

GHANEM, N., SAMY, R., KHALIL, B. S. F., BARAKAT, I. A. H., AHMED, A. Y. S., ISMAIL, E. M. A., and KONG, I. K., 2021. Mitochondrial activity and transcript abundance of quality marker genes during in vitro maturation of bovine and buffalo’s oocytes.  Asian Journal of Animal and Veterinary Advances, 9 (11): 18101815. https://doi.org/10.17582/journal.aavs/2021/9.11.1810.1815

GULER, A., POULIN, N., MENNILLOD, P., TERQUI, M., and COGNIE, Y., 2000. Effect of growth factors, EGF and IOF-I, and Estradiol on in vitro maturation of sheep oocytes. Theriogenology, 54:209-218. https://doi.org/10.1016/S0093-691X(00)00342-3

GUPTA, P. S. P., NANDI, S., RAVINDRANATHA, B. M., and SARMA, P. V., 2001. Technical Report: Effect of commercially available PMSG on maturation, fertilization and embryo development of buffalo oocytes in vitro. Reproduction, Fertility and Development, 13(6), 355-360.‏ https://doi.org/10.1071/RD01026

HAZARIKA, G., BISWAS, R. K., BORAH, P., DUTTA, D., NATH, N. C., KALITA, M. K., and DEKA, B. C., 2019. Effect of hormone combination on in vitro maturation of goat oocytes and its diametrical evaluation of expansion in different IVM media.‏ Journal of Entomology and Zoology Studies 2019; 7(1): 742-746. https://www.entomoljournal.com/archives/?year=2019&vol=7&issue=1&page=12

JIANG, Y., HE, Y., PAN, X., WANG, P., YUAN, X., and MA, B., 2023. Advances in oocyte maturation in vivo and in vitro in mammals. International journal of molecular sciences, 24(10), 9059. 10.3390/ijms24109059

KAABI, A. M., BARAKAT, I. A. H., ALAJMI, R. A., and ABDEL-DAIM, M. M., 2020. Use of black seed (Nigella sativa) honey bee to improve sheep oocyte maturation medium. Environmental Science and Pollution Research, 27(27), 33872-33881.‏ https://doi.org/10.1007/s11356-020-09504-7

KOUAMO, J., and KHARCHE, S. D. 2014. Dose dependent effect of pregnant mare serum gonadotropin and human chorionic gonadotropin on in vitro maturation of goat oocytes. Indian Journal of Animal Sciences 84(4),410-414.‏https://doi.org/10.56093/ijans.v84i4.39842

LEE, S. E., LEE, H. B., YOON, J. W., PARK, H. J., KIM, S. H., HAN, D. H., and PARK, S. P., 2023. Rapamycin Treatment During Prolonged In Vitro Maturation Enhances the Developmental Competence of Immature Porcine Oocytes. Journal of Animal Science and Technology.‏ https://doi.org/10.5187/jast.2023.e101

LEE, S. R., KIM, B. S., KIM, J. W., KIM, M. O., KIM, S. H., YOO, D. H., and RYOO, Z. Y., 2007. In vitro maturation, in vitro fertilization and embryonic development of canine oocytes. Zygote, 15(4), 347-353. ‏https://doi.org/10.1017/S0967199407004352  

LONERGAN, P., and FAIR, T. 2016. Maturation of oocytes in vitro. Annual Review of Animal Biosciences, 4, 255-268.‏  https://doi.org/10.1146/annurev-animal-022114-110822

MAREI, W. F., WATHES, D. C., and FOULADI-NASHTA, A. A., 2010. Impact of linoleic acid on bovine oocyte maturation and embryo development. Reproduction 139, 979–988. https://doi.org/10.1530/rep-09-0503

MINGOTI,G. Z., GARCIA, J.M., and ROSA-E-SILVA, A. A. M., 2002. Steroidogenesis in cumulus cells of bovine cumulus–oocyte-complexes matured in vitro with BSA and different concentrations of steroids. Animal reproduction science, 69 (3-4), 175-186,https://doi.org/10.1016/S0378-4320(01)00187-7

MOHANAN, A., PLAKKOT, B., and KANAKKAPARAMBIL, R., 2020. Biochemical constituents and steroid hormones in follicular fluid from antral follicles of cross-bred Malabari goats of Kerala. Biological Rhythm Research, 51(8), 1197-1205.‏ https://doi.org/10.1080/09291016.2018.1564574

MONDADORI, R., SANTIN, T., FIDELIS, A., PORFÍRIO, E., and BÁO, S., 2010. Buffalo (Bubalus bubalis) pre-antral follicle population and ultrastructural characterization of antral follicle oocyte. Reprod. Domest. Anim. 45, 33–37. https://doi.org/10.1111/j.1439-0531.2008.01199.

 MOUSSA, M., SHU, J., ZHANG, X. H., and ZENG, F., 2015. Maternal control of oocyte quality in cattle “a review”. Animal Reproduction Science, 155(11-27), 11-27. Doi: 10.1016/j.anireprosci.2015.01.011

MUSTAFA, F. F., and NAOMAN, U. T., 2022. Assessment of ova collection with or without centrifugation after ovarian slicing for In vitro fertilization of slaughterhouse specimens of Iraqi Awassi ewes. Iraqi Journal of Veterinary Sciences, 36(4), 967-972.‏ https://doi.org/10.33899/IJVS.2022.132707.2122  

NATARAJAN, R., SHANKAR, M. B., and MUNUSWAMY, D., 2010. Effect of α-tocopherol supplementation on in vitro maturation of sheep oocytes and in vitro development of preimplantation sheep embryos to the blastocyst stage. Journal of Assisted Reproduction and Genetics, 27, 483-490.‏ https://doi.org/10.1007/s10815-010-9430-7

NAWITO, M. F., MAHMOUD, K. G. M., KANDIEL, M. M. M., AHMED, Y. F., and SOSA, A. S. A., 2015. Effect of reproductive status on body condition score, progesterone concentration and trace minerals in sheep and goats reared in South Sinai, Egypt. African Journal of Biotechnology, 14(43), 3001-3005.‏ 10.5897/AJB2015.14953

PACZKOWSKI, M., SILVA, E., SCHOOLCRAFT, W. B., and KRISHER, R. L., 2013. Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes. Biology of reproduction, 88(5), 111-1‏. https://doi.org/10.1095/biolreprod.113.108548.

RICHANI, D., and GILCHRIST, R. B., 2022. Approaches to oocyte meiotic arrest in vitro and impact on oocyte developmental competence. Biology of Reproduction, 106(2), 243-252.‏ https://doi.org/10.1093/biolre/ioab176

ROBERTS, R., IATROPOULOU, A., CIANTAR, D., STARK, J., BECKER, D. L., FRANKS, S., and HARDY, K., 2005. Follicle-stimulating hormone affects metaphase I chromosome alignment and increases aneuploidy in mouse oocytes matured in vitro. Biology of reproduction, 72(1), 107-118.‏ https://doi.org/10.1095/biolreprod.104.032003

ROMEK, M., GAJDA, B., KRZYSZTOFOWICZ, E., KEPCZYNSKI, M., and SMORAG, Z., 2011. New technique to quantify the lipid composition of lipid droplets in porcine oocytes and pre-implantation embryos using Nile Red fluorescent probe. Theriogenology 75, 42–54. https://doi.org/10.1016/j.theriogenology.2010.06.040

RUSSELL, D. L., GILCHRIST, R. B., BROWN, H. M., and THOMPSON, J. G., 2016. Bidirectional communication between cumulus cells and the oocyte: old hands and new players? Theriogenology, 86(1), 62-68. doi: 10.1016/j.Theriogenology.2016.04.019

SATRIO, F. A., KARJA, N. W. K., SETIADI, M. A., KAIIN, E. M., GUNAWAN, M., MEMILI, E., and PURWANTARA, B., 2022. Improved maturation rate of bovine oocytes following sericin supplementation in collection and maturation media. Tropical Animal Science Journal, 45(1), 24-29.‏ DOI: https://doi.org/10.5398/tasj.2022.45.1.24

SHA, W., XU, B. Z., LI, H., LIU, D., FENG, H. L., and SUN, Q. Y., 2010. Effect of gonadotropins on oocyte maturation in vitro: an animal model. Fertiliy and Steriliy, 9(5), 1650-1661. Doi: https://doi.org/10.1016/j.fertnstert.2009.03.003 

SIRARD, M. A., and FIRST, N. L., 1988. In vitro inhibition of oocyte nuclear maturation in the bovine. Biology of reproduction, 39(2), 229-234. https://doi.org/10.1095/biolreprod39.2.229

STURMEY, R. G., and LEESE, H. J., 2003. Energy metabolism in pig oocytes and early embryos. Reproduction 126, 197–204. https://doi.org/10.1530/reprod/126.2.197.

SUDANO, M. J., RASCADO, T. D. S., TATA, A., BELAZ, K. R. A., SANTOS, V. G., VALENTE, R. S., MESQUITA, F. S., FERREIRA, C. R., ARAUJO, J. P., EBERLIN, M. N., and LANDIM-ALVARENGA, F. D. C., 2016. Lipidome signatures in early bovine embryo development. Theriogenology 86, 472–484. https://doi.org/10.1016/j.theriogenology.2016.03.025.

 TARAZONA, A. M., RODRIGUEZ, J. I., RESTREPO, L. F., and OLIVERA-ANGEL, M., 2006. Mitochondrial activity, distribution and segregation in bovine oocytes and in embryos produced in vitro. Reproduction in Domestic Animals, 41(1), 5-11. Doi: https://doi.org/10.1111/j.1439- 0531.2006.00615.x

 USLU, B. A., TASAL, I., GULYUZ, F., SENDAG, S., UCAR, O., GOERICKE-PESCH, S., and WEHREND, A., 2012. Effects of oestrus synchronisation using melatonin and norgestomet implants followed by eCG injection upon reproductive traits of fat-tailed Morkaraman ewes during suckling, anoestrus season. Small Ruminant Research, 108(1-3), 102-106.‏https://doi.org/10.1016/j.smallrumres.2012.07.002

VANDERHYDEN, B. C., and ARMSTRONG, D. T., 1990. Effects of gonadotropins and granulosa cell secretions on the maturation and fertilization of rat oocytes in vitro. Molecular Reproduction and Development, 26(4), 337-346.‏  https://doi.org/10.1002/mrd.1080260408

VIANA, J. H. M., SIQUEIRA, L. G. B., PALHAO, M. P., and CAMARGO, L. S. A., 2018. Features and perspectives of the Brazilian in vitro embryo industry. Animal Reproduction (AR), 9(1), 12-18.‏ https://www.animal-reproduction.org/article/5b5a605ef7783717068b470d

WANG, F., TIAN, X., ZHOU, Y., TAN, D., ZHU, S., DAI, Y., and LIU, G., 2014. Melatonin improves the quality of in vitro produced (IVP) bovine embryos: implications for blastocyst development, cryotolerance, and modifications of relevant gene expression. PloS one, 9(4), e93641. https://doi.org/10.1371/journal.pone.0093641

Wei, S. C., Gong, Z. D., Zhao, H. W., Liang, H. Q., Lai, L. J., and DENG, Y. Y., 2016. Equine chorionic gonadotropin influence on sheep oocyte in vitro maturation, apoptosis, and follicle-stimulating hormone receptor and luteinizing hormone receptor expression. Genet Mol Res, 15(4), 1-12.‏ DOI http://dx.doi.org/10.4238/gmr15049162

WIDAYATI, D. T., and PANGESTU, M., 2020. Effect of follicle-stimulating hormone on Bligon goat oocyte maturation and embryonic development post in vitro fertilization. Veterinary world, 13(11), 2443.‏ doi: 10.14202/vetworld.2020.2443-2446

XIAO, X., ZI, X. D., NIU, H. R., XIONG, X. R., ZHONG, J. C., LI, J., and WANG, Y., 2014. Effect of addition of FSH, LH and proteasome inhibitor MG132 to in vitro maturation medium on the developmental competence of yak (Bos grunniens) oocytes. Reproductive Biology and Endocrinology, 12, 1-7.‏ https://doi.org/10.1186/1477-7827-12-30

YANG, H., KOLBEN, T., MEISTER, S., PAUL, C., VAN DORP, J., EREN, S., and von SCHÖNFELDT, V., 2021. Factors influencing the in vitro maturation (IVM) of human oocyte. Biomedicines, 9(12), 1904.‏  https://doi.org/10.3390/biomedicines9121904

Statistics
Article View: 337
PDF Download: 336
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.