Rahma, H., Jwher, D. (2024). Detection of clfA, clfB and coa genes in Methicillin-Resistant Staphylococcus aureus (MRSA) isolated from Nasal Cavity of Cows, Buffalo and their Breeders in Nineveh Governorate, Iraq. Journal of Applied Veterinary Sciences, 9(3), 1-10. doi: 10.21608/javs.2024.276537.1324
H. Y. Rahma; Dh. M. Jwher. "Detection of clfA, clfB and coa genes in Methicillin-Resistant Staphylococcus aureus (MRSA) isolated from Nasal Cavity of Cows, Buffalo and their Breeders in Nineveh Governorate, Iraq". Journal of Applied Veterinary Sciences, 9, 3, 2024, 1-10. doi: 10.21608/javs.2024.276537.1324
Rahma, H., Jwher, D. (2024). 'Detection of clfA, clfB and coa genes in Methicillin-Resistant Staphylococcus aureus (MRSA) isolated from Nasal Cavity of Cows, Buffalo and their Breeders in Nineveh Governorate, Iraq', Journal of Applied Veterinary Sciences, 9(3), pp. 1-10. doi: 10.21608/javs.2024.276537.1324
Rahma, H., Jwher, D. Detection of clfA, clfB and coa genes in Methicillin-Resistant Staphylococcus aureus (MRSA) isolated from Nasal Cavity of Cows, Buffalo and their Breeders in Nineveh Governorate, Iraq. Journal of Applied Veterinary Sciences, 2024; 9(3): 1-10. doi: 10.21608/javs.2024.276537.1324
Detection of clfA, clfB and coa genes in Methicillin-Resistant Staphylococcus aureus (MRSA) isolated from Nasal Cavity of Cows, Buffalo and their Breeders in Nineveh Governorate, Iraq
Dep. of Vet. Public Health, College of Vet. Med. University of Mosul, Mosul, Iraq
Receive Date: 12 March 2024,
Revise Date: 16 April 2024,
Accept Date: 06 May 2024
Abstract
The present study aimed to isolate and identify Methicillin-Resistant Staphylococcus aureus MRSA from the nasal cavity of healthy cows and buffaloes and their breeders in Nineveh Governorate and detect some virulence factors by using molecular methods. A total of 150 samples of cotton swabs were collected randomly from different areas of Nineveh governorate. The samples were cotton swabs from the nasal passages of healthy cattle, buffaloes, and their breeders (50 swabs of each type). All the samples were subjected to culture and molecular testing. The results showed the highest isolation percentage of S. aureus from cattle followed by breeders, then buffaloes, at 54%, 40%, and 32%, respectively. The total isolation percentage of MRSA was 65.1%. The highest percentage was in buffaloes, followed by breeders and cattle, at 93.75%, 70%, and 44.44%, respectively. Out of 41 isolates from cattle, buffaloes, and their breeders, the virulence genes clfA, clfB, and coa were detected in MRSA at rates of 100%, 80.49%, and 65.85%, respectively. The current study concluded that cattle and buffalo are considered carriers and potential transmitters of MRSA, which makes them risk factors for infection in humans, especially those who are in direct contact with animals. Together, these findings also highlight the need to prevent the transmission of zoonotic pathogens to humans via occupational exposure or consumption of contaminated animal products.
ABDULRAHMAN, RASOL. V., and ABDULRAHMAN, R., 2023. Detection and Molecular Characterization of Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus (MRSA) Nasal Carriage Isolates from Healthy Domestic Animal in Duhok Province. Egyptian Journal of Veterinary Sciences. 54(2):263–273. https://doi.org/10.21608/ejvs.2022.168434.1404
AGABOU, A., OUCHENANE, Z., ESSEBE, C.N., KHEMISSI, S., CHEHBOUB, M.T.E., and CHEHBOUB, I.B., 2017. Emergence of nasal carriage of ST80 and ST152 PVL+ Staphylococcus aureus isolates from livestock in Algeria. Toxins (Basel). 9(10):303-310. https://doi.org/10.3390/toxins9100303
ALZOHAIRY, M.A. 2011. Colonization and antibiotic susceptibility pattern of methicillin-resistance Staphylococcus aureus (MRSA) among farm animals in Saudi Arabia. J Bacteriol 2011; 3(4):63– 68. https://doi.org/10.5897/JBR.9000011
CHEN, B.J., XIE, X.Y., NI, L.J., DAI, X.L., LU, Y., and WU, X.Q., 2017. Factors associated with Staphylococcus aureus nasal carriage and molecular characteristics among the general population at a Medical College Campus in Guangzhou, South China. Annals of Clinical Microbiology and Antimicrobials. 16(1)1-5. http://dx.doi.org/10.1186/s12941-017-0206-0
CHEN, C., and WU, F., 2020. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) colonization and infection among livestock workers and veterinarians: a systematic review and meta-analysis. Occupational and Environmental Medicine. 78(7):530–540. http://dx.doi.org/10.1136/oemed-2020-106418
CRESPO-PIAZUELO, D., and LAWLOR, P.G., 2021. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) prevalence in humans in close contact with animals and measures to reduce on-farm colonisation. Irish Veterinary Journal. 74(1)1-3. http://dx.doi.org/10.1186/s13620-021-00200-7
EL-ASHKER, M., MONECKE, S., GWIDA, M., SAAD, T., EL-GOHARY, A., and MOHAMED, A., 2022. Molecular characterisation of methicillin-resistant and methicillin-susceptible Staphylococcus aureus clones isolated from healthy dairy animals and their caretakers in Egypt. Veterinary Microbiology. 267:109374. http://dx.doi.org/10.1016/j.vetmic.2022.109374
FAHIM, I.R., MOHAMED, M.A.H., EZZAT, A.A.M., and ALKHERKHISY, M.M., 2023. Evaluation of a Chromogenic Methicillin Resistant Staphylococcus aureus Selective Medium. Al-Azhar International Medical Journal. 4(9). http://dx.doi.org/10.58675/2682-339x.2030
FIKRY, A., AHMED, A. E.-R., SAMIR, A., ABO EL- YAZEED, H., EL-AMRY, K., and NAIM, H., 2021. Bacteriological and Molecular Comparative Study between Staphylococcus aureus Isolated from Animals and Human. Journal of Applied Veterinary Sciences, 6(2), 44–52. https://doi.org/10.21608/javs.2021.159379
FISHOVITZ, J., HERMOSO, J.A., CHANG, M., and MOBASHERY, S., 2014. Penicillinābinding protein 2a of methicillināresistant Staphylococcus aureus. IUBMB Life. 66(8):572–577. http://dx.doi.org/10.1002/iub.1289
FURUYA, E.Y., and LOWY, F.D., 2006. Antimicrobial-resistant bacteria in the community setting. Nature Reviews Microbiology. 4(1):36–45. http://dx.doi.org/10.1038/nrmicro1325
GHARSA, H., BEN SLAMA, K., GÓMEZ-SANZ, E., LOZANO, C., ZARAZAGA, M., and MESSADI, L., 2015. Molecular characterization of Staphylococcus aureus from nasal samples of healthy farm animals and pets in Tunisia. Vector Borne Zoonotic Dis. 15(2):109–115; https:// doi.org/10.1089/vbz.2014.1655
GHARSA, H., BEN SLAMA, K., LOZANO, C., GÓMEZ-SANZ, E., KLIBI, N., and BEN SALLEM, R., 2012. Prevalence, antibiotic resistance, virulence traits and genetic lineages of Staphylococcus aureus in healthy sheep in Tunisia. Veterinary Microbiology. 156(3–4):367–373. http://dx.doi.org/10.1016/j.vetmic.2011.11.009
GNANAMANI, A., HARIHARAN, P., and PAUL-SATYASEELA, M., 2017.Staphylococcus aureus: Overview of Bacteriology, Clinical Diseases, Epidemiology, Antibiotic Resistance and Therapeutic Approach. Frontiers in Staphylococcus aureus. http://dx.doi.org/10.5772/67338
HAMZA, D.A., DORGHAM, S.M., and ARAFA, A., 2015. Coagulase Gene Typing with Emphasis on Methicillin-Resistance Staphylococci: Emergence to Public Health. Advances in Infectious Diseases. 5(4):196–203. http://dx.doi.org/10.4236/aid.2015.54025
HILTUNEN, T., VIRTA, M., and LAINE, A.L., 2017. Antibiotic resistance in the wild: an eco-evolutionary perspective. Philosophical Transactions of the Royal Society B: Biological Sciences. 372(1712):20160039. http://dx.doi.org/10.1098/rstb.2016.0039
HU, D.L., LI, S., FANG, R., and ONO, H.K., 2021. Update on molecular diversity and multipathogenicity of staphylococcal superantigen toxins. Animal Diseases. 1(1): 23- 28 http://dx.doi.org/10.1186/s44149-021-00007-7
IGBINOSA, E.O., BESHIRU, A., AKPOREHE, L.U., and OGOFURE, A.G., 2016. Detection of methicillin-resistant staphylococci isolated from food producing animals: a public health implication. Vet Sci 3(3):14-19. https://doi.org/10.3390/vetsci3030014
JAVID, F., TAKU, A., BHAT, M.A., BADROO, G.A., MUDASIR, M., and SOFI, T.A., 2018. Molecular typing of Staphylococcus aureus based on coagulase gene. Veterinary World. 11(4):423–430. http://dx.doi.org/10.14202/vetworld.2018.423-430
JENUL, C., and HORSWILL, A.R., 2019. Regulation of Staphylococcus aureus Virulence. Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Braunstein M, Rood JI, editors. Microbiology Spectrum. 7(2)12-17. http://dx.doi.org/10.1128/microbiolspec.gpp3-0031-2018
KADARIYA, J., SMITH, T.C., and THAPALIYA, D., 2014.Staphylococcus aureus and Staphylococcal Food-Borne Disease: An Ongoing Challenge in Public Health. BioMed Research International. 1(1):1–9. http://dx.doi.org/10.1155/2014/827965
KOREEN, L., RAMASWAMY, S.V., NAIDICH, S., KOREEN, I.V., GRAFF, G.R., and GRAVISS, E.A., 2005. Comparative Sequencing of the Serine-Aspartate Repeat-Encoding Region of the Clumping Factor B Gene (clfB) for Resolution within Clonal Groups of Staphylococcus aureus. Journal of Clinical Microbiology. 43(8):3985–3994. http://dx.doi.org/10.1128/jcm.43.8.3985-3994.2005
KOTB, E., and GAFER, J., 2020. Molecular Detection of Toxins And Disinfectant Resistance Genes Among Staphylococcus Aureus Isolated From Dairy Cattle In Egypt. Journal of Applied Veterinary Sciences, 5(1), 35–45. https://doi.org/10.21608/javs.2020.75411
KUMAR, A., KAUSHIK, P., ANJAY KUMAR, P., and KUMAR, M., 2017. Prevalence of methicillin-resistant Staphylococcus aureus skin and nasal carriage isolates from bovines and its antibiogram. Veterinary World. 10(6):593–597. http://dx.doi.org/10.14202/vetworld.2017.593-597
KWIECINSKI, J.M., and HORSWILL, A.R., 2020.Staphylococcus aureus bloodstream infections: pathogenesis and regulatory mechanisms. Current Opinion in Microbiology. (53):51–60. http://dx.doi.org/10.1016/j.mib.2020.02.005
LEE, J.H., JEONG, J.M., PARK, Y.H., CHOI, S.S., KIM, Y.H., and CHAE, J.S., 2004. Evaluation of the methicillin-resistant Staphylococcus aureus (MRSA)-screen latex agglutination test for detection of MRSA of animal origin. J Clin Microbiol. 42(6):2780–2782. https://doi.org/10.1128/ JCM.42.6.2780-2782.2004
MACFADYEN, A.C., HARRISON, E.M., ELLINGTON, M.J., PARKHILL, J., HOLMES, M.A., and PATERSON, G.K., 2018. A highly conserved mecC-encoding SCCmec type XI in a bovine isolate of methicillin-resistantStaphylococcus xylosus. Journal of Antimicrobial Chemotherapy. 73(12):3516–3518. http://dx.doi.org/10.1093/jac/dky333
MAIRI, A., TOUATI, A., PANTEL, A., ZENATI, K., MARTINEZ, A.Y., and DUNYACH-REMY, C., 2019. Distribution of Toxinogenic Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus from Different Ecological Niches in Algeria. Toxins. 11(9):500-506. http://dx.doi.org/10.3390/toxins11090500
MARKEY, B., LEONARD, F., ARCHAMBAULT, M., CULLINANE, A., and MAGUIRE, D., 2013. Clinical Veterinary Microbiology. 2nd Edition, Dublin: Mosby Ltd.
MORENO-GRÚA, E., PÉREZ-FUENTES, S., MUÑOZ-SILVESTRE, A., VIANA, D., FERNÁNDEZ-ROS, A.B., and SANZ-TEJERO, C., 2018. Characterization of Livestock-Associated Methicillin-Resistant Staphylococcus aureus Isolates Obtained From Commercial Rabbitries Located in the Iberian Peninsula. Frontiers in Microbiology. 1(1)9-13. http://dx.doi.org/10.3389/fmicb.2018.01812
MØRK, T., KVITLE, B., and JØRGENSEN, H.J., 2012. Reservoirs of Staphylococcus aureus in meat sheep and dairy cattle. Vet Microbiol. 155(1):81–87; https://doi.org/10.1016/j.vetmic.2011.08.010
MUBARAK, A. 2021. Prevalence and Genetic Diversity of Coagulase Negative Staphylococcus in Food Products Collected from Riyadh Region. Journal of Pure and Applied Microbiology. 15(4):1987–1994. http://dx.doi.org/10.22207/jpam.15.4.20
O´BRIEN, L., KERRIGAN, S.W., KAW, G., HOGAN, M., and PENADÉS, J., LITT, D., 2002. Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: roles for the clumping factors ClfA and ClfB, the serine–aspartate repeat protein SdrE and protein A. Molecular Microbiology. 44(4):1033–1044. http://dx.doi.org/10.1046/j.1365-2958.2002.02935.x
OLIVEIRA, D., BORGES, A., and SIMÕES, M., 2018. Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases. Toxins. 10(6):252-257. http://dx.doi.org/10.3390/toxins10060252
PAPADOPOULOS, P., PAPADOPOULOS, T., ANGELIDIS, A.S., BOUKOUVALA, E., ZDRAGAS, A., and PAPA, A., 2018. Prevalence of Staphylococcus aureus and of methicillin-resistant S. aureus (MRSA) along the production chain of dairy products in north-western Greece. Food Microbiol. (69):43–50. https://doi.org/10.1016/j.fm.2017.07.016
PATERSON, G.K., HARRISON, E.M., and HOLMES, M.A., 2014. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends in Microbiology. 22(1):42–47. http://dx.doi.org/10.1016/j.tim.2013.11.003
PEACOCK, S.J., MOORE, C.E., JUSTICE, A., KANTZANOU, M., STORY, L., and MACKIE, K., 2002. Virulent Combinations of Adhesin and Toxin Genes in Natural Populations of Staphylococcus aureus. Infection and Immunity. 70(9):4987–4996. http://dx.doi.org/10.1128/iai.70.9.4987-4996.2002
R. ORGANJI, S., ABULREESH, H., ELBANNA, K.E.H. OSMAN, G.H.K., and ALMALKI, M., 2018. Diversity and Characterization of Staphylococcus spp. in Food and Dairy Products: a foodstuff safety assessment. Journal of microbiology, biotechnology and food sciences. 7(6):586–593. http://dx.doi.org/10.15414/jmbfs.2018.7.6.586-593
RAHIMI, H., SAEI, H.D., and AHMADI, M., 2015. Nasal carriage of Staphylococcus aureus: frequency and antibiotic resistance in healthy ruminants. Jundishapur J Microbiol. 8(10):2241322420 https://doi. org/10.5812/jjm.22413
RAHMAN, M.M., AMIN, K.B., RAHMAN, S.M.M., KHAIR, A., RAHMAN, M., and HOSSAIN, A., 2018. Investigation of methicillin-resistant Staphylococcus aureus among clinical isolates from humans and animals by culture methods and multiplex PCR. BMC Veterinary Research. 14(1)1-7. http://dx.doi.org/10.1186/s12917-018-1611-0
RICHARDSON, A. R. 2019. Virulence and Metabolism. Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Braunstein M, Rood JI, editors. Microbiology Spectrum. 7(2)1-8. http://dx.doi.org/10.1128/microbiolspec.gpp3-0011-2018
ROSSI, C.C., PEREIRA, M.F., and GIAMBIAGI-DEMARVAL, M., 2020. Underrated Staphylococcus species and their role in antimicrobial resistance spreading. Genetics and Molecular Biology. 43(suppl 2). http://dx.doi.org/10.1590/1678-4685-gmb-2019-0065
SAKR A., BRÉGEON F., MÈGE J.L., ROLAIN J.M., and BLIN O., 2018.Staphylococcus aureus Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections. Frontiers in Microbiology. 9(1)1-6. http://dx.doi.org/10.3389/fmicb.2018.02419
SCHERRER, D., CORTI, S., MUEHLHERR, J.E., ZWEIFEL, C., and STEPHAN, R., 2004. Phenotypic and genotypic characteristics of Staphylococcus aureus isolates from raw bulk-tank milk samples of goats and sheep. Veterinary Microbiology. 101(2):101–107. http://dx.doi.org/10.1016/j.vetmic.2004.03.016
SHRIVASTAVA, S., SHRIVASTAVA, P., and RAMASAMY, J., 2018. World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Journal of Medical Society. 32(1):76-83. http://dx.doi.org/10.4103/jms.jms_25_17
STAPLETON, P.D., and TAYLOR, P.W., 2002. Methicillin Resistance in Staphylococcus Aureus: Mechanisms and Modulation. Science Progress. 85(1):57–72. http://dx.doi.org/10.3184/003685002783238870
TRISTAN, A., YING, L., BES, M., ETIENNE, J., VANDENESCH, F., and LINA, G., 2003. Use of Multiplex PCR to Identify Staphylococcus aureus Adhesins Involved in Human Hematogenous Infections. Journal of Clinical Microbiology. 41(9):4465–4467. http://dx.doi.org/10.1128/jcm.41.9.4465-4467.2003
VERAS, J.F., DO CARMO, L.S., TONG, L.C., SHUPP, J.W., CUMMINGS, C., and DOS SANTOS, D.A., 2008. A study of the enterotoxigenicity of coagulase-negative and coagulase-positive staphylococcal isolates from food poisoning outbreaks in Minas Gerais, Brazil. International Journal of Infectious Diseases. 12(4):410–415. http://dx.doi.org/10.1016/j.ijid.2007.09.018
WANG, J., SANG, L., SUN, S., CHEN, Y., CHEN, D., and XIE, X., 2019. Characterization of Staphylococcus aureus isolated from rabbits in Fujian, China. Epidemiology and Infection. 147(1)5-14. http://dx.doi.org/10.1017/s0950268819001468
WATKINS, K.E., and UNNIKRISHNAN, M., 2020. Evasion of host defenses by intracellular Staphylococcus aureus. Advances in Applied Microbiology. 1(1)105–141. http://dx.doi.org/10.1016/bs.aambs.2020.05.001
WEESE, J.S. 2005. Methicillin-Resistant Staphylococcus aureus: An Emerging Pathogen in Small Animals. Journal of the American Animal Hospital Association. 41(3):150–157. http://dx.doi.org/10.5326/0410150
ZECCONI, A., and SCALI, F., 2013.Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunology Letters. 150(1–2):12–22. http://dx.doi.org/10.1016/j.imlet.2013.01.004
ZEDAN, A., ALATFEEHY, N., and MAROUF, S., 2022. Isolation and Antibiogram Profiles of Staphylococcus aureus Isolates from Cow milk and Dog samples. Journal of Applied Veterinary Sciences, 0(0), 0–0. https://doi.org/10.21608/javs.2022.164610.1181