1Department of Animal Science, University of the Free State, Bloemfontein, South Africa
2Department of Animal and Poultry Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
Receive Date: 13 October 2023,
Revise Date: 15 November 2023,
Accept Date: 27 November 2023
Abstract
T The objective of this paper was to evaluate factors affecting tannin dietary inclusion on enteric methane emission (CH4) and performance in dairy cows. Dairy production contributes to the greenhouse effect as it naturally emits enteric CH4. Therefore, this has sparked a need to control enteric methane emissions using anti-methane natural compounds such as tannins. Even at moderate dietary inclusions, tannin use in animal diets can occasionally reduce dairy performance and enteric CH4. This is due to the fact that most studies employ tannins to reduce enteric CH4 in dairy cows excluding other influential factors by focusing on the tannin inclusion effect alone. Therefore, there is a need to study different factors that influence the effect of tannins on enteric CH4 and dairy performance regardless of dietary tannin inclusion to improve the control of enteric CH4 at no expense to dairy performance. Hence, there is a need to identify factors that affect dietary tannin inclusion, such as tannin source, diet and animal factors that need consideration to prevent the control of enteric CH4 by tannins at the expense of animal performance. This approach would inform future studies relevant to the use of tannins in dairy diets to improve the effect of this treatment through in vivo and in vitro studies to ensure dairy production is harmless to the environment while meeting production targets.
Adejoro, F. A., Hassen, A., and Akanmu, A. M., 2019. Effect of lipid-encapsulated acacia tannin extract on feed intake, nutrient digestibility and methane emission in sheep. Animals 9 https://doi.org/10.3390/ani9110863
Adejoro, F. A., Hassen, A., and Akanmu, A. M., 2019. Effect of lipid-encapsulated acacia tannin extract on feed intake, nutrient digestibility and methane emission in sheep. Animals 9 https://doi.org/10.3390/ani9110863
Adejoro, F. A., Hassen, A., Akanmu, A. M., and Morgavi, D. P., 2020. Replacing urea with nitrate as a non-protein nitrogen source increases lambs’ growth and reduces methane production, whereas acacia tannin has no effect. Anim. Feed Sci. Technol. 259, 114360 https://doi.org/10.1016/J.ANIFEEDSCI.2019.114360
Ahmed, M. A., Basha, N. A., and Nsahlai, I. V., 2014. Wattle tannins as control strategy for gastrointestinal nematodes in sheep. African J. Agric. Res. 9 https://doi.org/10.5897/ajar2014.8718.
Ahnert, S., Dickhoefer, U., Schulz, F., and Susenbeth, A., 2015. Influence of ruminal Quebracho tannin extract infusion on apparent nutrient digestibility, nitrogen balance, and urinary purine derivatives excretion in heifers. Livest. Sci. 177 https://doi.org/10.1016/j.livsci.2015.04.004.
Al-Kindi, A., Schiborra, A., Buerkert, A., and Schlecht, E., 2017. Effects of quebracho tannin extract and activated charcoal on nutrient digestibility, digesta passage and faeces composition in goats. J. Anim. Physiol. Anim. Nutr. (Berl). 101, 576–588 https://doi.org/10.1111/jpn.12461.
Alstrup, L., Hellwing, A. L. F., Lund, P., and Weisbjerg, M. R., 2015. Effect of fat supplementation and stage of lactation on methane production in dairy cows. Anim. Feed Sci. Technol. 207 https://doi.org/10.1016/j.anifeedsci.2015.05.017.
Alves, T. P., Dall-Orsoletta, A. C., and NunesRibeiro-Filho, H. M., 2017a. The effects of supplementing Acacia mearnsii tannin extract on dairy cowdry matter intake, milk production, and methane emission in a tropicalpasture. Trop. Anim. Health Prod. 49, 1663–1668 https://doi.org/10.1007/s11250-017-1374-9.
Alves, T. P., Dall-Orsoletta, A. C., and Ribeiro-Filho, H. M. N., 2017b. The effects of supplementing Acacia mearnsii tannin extract on dairy cow dry matter intake, milk production, and methane emission in a tropical pasture. Trop. Anim. Health Prod. 49, 1663–1668.
Anas, M. A., Yusiati, L. M., Kurniawati, A., and Hanim, C., 2015. Evaluation of Albazia chinensis as tannins source for in vitro methane production inhibitor agents sheep rumen liquor.in The 6th International Seminar on Tropical Animal Production: The 6th International Seminar on Tropical Animal Production.
Animut, G., Puchala, R., Goetsch, A. L., Patra, A. K., Sahlu, T., Varel, V. H., and Wells, J., 2008. Methane emission by goats consuming different sources of condensed tannins. Anim. Feed Sci. Technol. 144 https://doi.org/10.1016/j.anifeedsci.2007.10.015.
Avila, A. S., Zambom, M. A., Faccenda, A., Fischer, M. L., Anschau, F. A., Venturini, T., Tinini, R. C. R., Dessbesell, J. G., and Faciola, A. P., 2020a. Effects of black wattle (Acacia mearnsii) condensed tannins on intake, protozoa population, ruminal fermentation, and nutrient digestibility in jersey steers. Animals 10 https://doi.org/10.3390/ani10061011.
Avila, A. S., Zambom, M. A., Faccenda, A., Werle, C. H., Almeida, A. R. E., Schneider, C. R.,Grunevald, D. G., and Faciola, A. P., 2020b. Black wattle (Acacia mearnsii) condensed tannins as feed additives to lactating dairy cows. Animals 10 https://doi.org/10.3390/ani10040662.
Beauchemin, K. A., McGinn, S. M., Martinez, T. F., and McAllister, T. A., 2007. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J. Anim. Sci. 85 https://doi.org/10.2527/jas.2006-686.
Bell, M. J., Wall, E., Simm, G., and Russell, G., 2011. Effects of genetic line and feeding system on methane emissions from dairy systems. Anim. Feed Sci. Technol. 166, 699–707.
Bittante, G., Cecchinato, A., and Schiavon, S., 2018. Dairy system, parity, and lactation stage affect enteric methane production, yield, and intensity per kilogram of milk and cheese predicted from gas chromatography fatty acids. J. Dairy Sci. 101 https://doi.org/10.3168/jds.2017-13472.
Cardoso-Gutierrez, E., Aranda-Aguirre, E., Robles-Jimenez, L. E., Castelán-Ortega, O. A., Chay-Canul, A. J., Foggi, G., Angeles-Hernandez, J. C., Vargas-Bello-Pérez, E., and González-Ronquillo, M., 2021. Effect of tannins from tropical plants on methane production from ruminants: A systematic review. Vet. Anim. Sci. 14 https://doi.org/10.1016/j.vas.2021.100214.
Caro, D., Kebreab, E., and Mitloehner, F. M., 2016. Mitigation of enteric methane emissions from global livestock systems through nutrition strategies. Clim. Change 137 https://doi.org/10.1007/s10584-016-1686-1.
Carulla, J. E., Kreuzer, M., Machmüller, A., and Hess, H. D., 2005. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust. J. Agric. Res. 56, 961–970.
Costa-Júnior, L. M., Costa, J. S., LÔbo, Í. C. P. D., Soares, A. M. S., Abdala, A. L., Chaves, D. P., Batista, Z. S., and Louvandini, H., 2014. Long-term effects of drenches with condensed tannins from Acacia mearnsii on goats naturally infected with gastrointestinal nematodes. Vet. Parasitol. 205 https://doi.org/10.1016/j.vetpar.2014.07.024.
Dall-Orsoletta, A. C., Almeida, J. G. R., Carvalho, P. C. F., Savian, J. V., and Ribeiro-Filho, H. M. N., 2016. Ryegrass pasture combined with partial total mixed ration reduces enteric methane emissions and maintains the performance of dairy cows during mid to late lactation. J. Dairy Sci. 99 https://doi.org/10.3168/jds.2015-10396.
Denninger, T. M., Schwarm, A., Birkinshaw, A., Terranova, M., Dohme-Meier, F., Münger, A., Eggerschwiler, L., Bapst, B., Wegmann, S., Clauss, M., others, and Kreuzer, M., 2020. Immediate effect of Acacia mearnsii tannins on methane emissions and milk fatty acid profiles of dairy cows. Anim. Feed Sci. Technol. 261, 114388 https://doi.org/10.1016/j.anifeedsci.2019.114388.
Díaz Carrasco, J. M., Cabral, C., Redondo, L. M., Pin Viso, N. D., Colombatto, D., Farber, M. D., and Fernández Miyakawa, M. E., 2017. Impact of Chestnut and Quebracho Tannins on Rumen Microbiota of Bovines. Biomed Res. Int. 2017 https://doi.org/10.1155/2017/9610810.
Van Dung, D., Phung, L. D., and Roubík, H., 2019. Performance and estimation of enteric methane emission from fattening Vietnamese yellow cattle fed different crude protein and concentrate levels in the diet. Adv. Anim. Vet. Sci. 7 https://doi.org/10.17582/journal.aavs/2019/7.11.962.968.
El-Zaiat, H. M., Kholif, A. E., Moharam, M. S., Attia, M. F., Abdalla, A. L., and Sallam, S. M. A., 2020. The ability of tanniniferous legumes to reduce methane production and enhance feed utilization in Barki rams: in vitro and in vivo evaluation. Small Rumin. Res. 193 https://doi.org/10.1016/j.smallrumres.2020.106259.
Focant, M., Froidmont, E., Archambeau, Q., Dang Van, Q. C. C., and Larondelle, Y., 2019. The effect of oak tannin (Quercus robur) and hops (Humulus lupulus) on dietary nitrogen efficiency, methane emission, and milk fatty acid composition of dairy cows fed a low-protein diet including linseed. J. Dairy Sci. 102, 1144–1159 https://doi.org/10.3168/jds.2018-15479.
Fox, N. J., Smith, L. A., Houdijk, J. G. M., Athanasiadou, S., and Hutchings, M. R., 2018. Ubiquitous parasites drive a 33% increase in methane yield from livestock. Int. J. Parasitol. 48 https://doi.org/10.1016/j.ijpara.2018.06.001.
Geneviève, Z., Adama, K., Balé, B., Corrêa, P. S., Lemos, L. N., Vincent, N., Hamadou, T. H., Hervé, H., Helder, L., and Luiz, A. A., 2018. In vitro rumen fermentation characteristics, methane production and rumen microbial community of two major acacia species used in Sahelian region of Burkina Faso. Trop. Subtrop. Agroecosystems 21 https://doi.org/10.56369/tsaes.2527.
Gerlach, K., Pries, M., Tholen, E., Schmithausen, A. J., Büscher, W., and Südekum, K. H., 2018. Effect of condensed tannins in rations of lactating dairy cows on production variables and nitrogen use efficiency. Animal 12 https://doi.org/10.1017/S1751731117003639.
Giamouri, E., Zisis, F., Mitsiopoulou, C., Christodoulou, C., Pappas, A. C., Simitzis, P. E., Kamilaris, C., Galliou, F., Manios, T., Mavrommatis, A., and Tsiplakou, E., 2023. Sustainable Strategies for Greenhouse Gas Emission Reduction in Small Ruminants Farming. Sustain. 15 https://doi.org/10.3390/su15054118.
Grainger, C., Clarke, T., Auldist, M. J., Beauchemin, K. A., McGinn, S. M., Waghorn, G. C., and Eckard, R. J., 2009. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows . Can. J. Anim. Sci. 89 https://doi.org/10.4141/cjas08110.
Griffiths, W. M., Clark, C. E. F., Clark, D. A., and Waghorn, G. C., 2013. Supplementing lactating dairy cows fed high-quality pasture with black wattle (Acacia mearnsii) tannin. Animal 7 https://doi.org/10.1017/S1751731113001420.
Hassanat, F., and Benchaar, C., 2013. Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. J. Sci. Food Agric. 93, 332–339 https://doi.org/10.1002/jsfa.5763.
Henke, A., Dickhoefer, U., Westreicher-Kristen, E., Knappstein, K., Molkentin, J., Hasler, M., and Susenbeth, A., 2017. Effect of dietary Quebracho tannin extract on feed intake, digestibility, excretion of urinary purine derivatives and milk production in dairy cows. Arch. Anim. Nutr. 71 https://doi.org/10.1080/1745039X.2016.1250541.
Hoehn, A. N., Titgemeyer, E. C., Nagaraja, T. G., Drouillard, J. S., Miesner, M. D., and Olson, K. C., 2018. Effects of high condensed-tannin substrate, prior dietary tannin exposure, antimicrobial inclusion, and animal species on fermentation parameters following a 48 h in vitro incubation. J. Anim. Sci. 96, 343–353.
Huhtanen, P., Ramin, M., and Cabezas-Garcia, E. H., 2016. Effects of ruminal digesta retention time on methane emissions: A modelling approach.in Animal Production Science.
Huyen, N. T., Desrues, O., Alferink, S. J. J., Zandstra, T., Verstegen, M. W. A., Hendriks, W. H., and Pellikaan, W. F., 2016. Inclusion of sainfoin (Onobrychis viciifolia) silage in dairy cow rations affects nutrient digestibility, nitrogen utilization, energy balance, and methane emissions. J. Dairy Sci. 99, 3566–3577.
Hynes, D. N., Stergiadis, S., Gordon, A., and Yan, T., 2016. Effects of concentrate crude protein content on nutrient digestibility, energy utilization, and methane emissions in lactating dairy cows fed fresh-cut perennial grass. J. Dairy Sci. 99 https://doi.org/10.3168/jds.2016-11509.
Ibrahim, S. L., and Hassen, A., 2022. Effect of non-encapsulated and encapsulated mimosa (Acacia mearnsii) tannins on growth performance, nutrient digestibility, methane and rumen fermentation of South African mutton Merino ram lambs. Anim. Feed Sci. Technol. 294, 115502 https://doi.org/https://doi.org/10.1016/j.anifeedsci.2022.115502.
Jayanegara, A., Goel, G., Makkar, H. P. S., and Becker, K., 2015. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 209 https://doi.org/10.1016/j.anifeedsci.2015.08.002.
Kapp-Bitter, A. N., Dickhoefer, U., Suglo, E., Baumgartner, L., Kreuzer, M., and Leiber, F., 2020. Graded supplementation of chestnut tannins to dairy cows fed protein-rich spring pasture: Effects on indicators of protein utilization. J. Anim. Feed Sci. 29 https://doi.org/10.22358/jafs/121053/2020.
Koenig, K. M., and Beauchemin, K. A., 2018. Effect of feeding condensed tannins in high protein finishing diets containing corn distillers grains on ruminal fermentation, nutrient digestibility, and route of nitrogen excretion in beef cattle. J. Anim. Sci. 96 https://doi.org/10.1093/jas/sky273.
Kozloski, G. V., Härter, C. J., Hentz, F., de Ávila, S.C., Orlandi, T., and Stefanello, C. M., 2012. Intake, digestibility and nutrients supply to wethers fed ryegrass and intraruminally infused with levels of Acacia mearnsii tannin extract. Small Rumin. Res. 106, 125–130 https://doi.org/https://doi.org/10.1016/j.smallrumres.2012.06.005.
Krueger, W. K., Gutierrez-Bañuelos, H., Carstens, G. E., Min, B. R., Pinchak, W. E., Gomez, R. R., Anderson, R. C., Krueger, N. A., and Forbes, T. D. A., 2010. Effects of dietary tannin source on performance, feed efficiency, ruminal fermentation, and carcass and non-carcass traits in steers fed a high-grain diet. Anim. Feed Sci. Technol. 159 https://doi.org/10.1016/j.anifeedsci.2010.05.003.
Kumar, S., Indugu, N., Vecchiarelli, B., and Pitta, D. W., 2015. Associative patterns among anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes in diet and age in the rumen of dairy cows. Front. Microbiol. 6 https://doi.org/10.3389/fmicb.2015.00781.
Lazzari, G., Münger, A., Eggerschwiler, L., Borda-Molina, D., Seifert, J., Camarinha-Silva, A., Schrade, S., Zähner, M., Zeyer, K., Kreuzer, M., and Dohme-Meier, F., 2023. Effects of Acacia mearnsii added to silages differing in nutrient composition and condensed tannins on ruminal and manure-derived methane emissions of dairy cows. J. Dairy Sci. https://doi.org/10.3168/jds.2022-22901.
Lee, J. M., Woodward, S. L., Waghorn, G. C., and Clark, D. A., 2004. Methane emissions by dairy cows fed increasing proportions of white clover ( Trifolium repens) in pasture. Proc. New Zeal. Grassl. Assoc. 66.
Lima, P. R., Apdini, T. A., Freire, A. S., Santana, A. S., Moura, M. L. M., Nascimento, J. C. S., Rodrigues, R. T. S., Dijkstra, J., Garcez Neto, A. F., Queiroz, M. A. A., and Menezes, R. D., 2019a. Dietary supplementation with tannin and soybean oil on intake, digestibility, feeding behavior, ruminal protozoa and methane emission in sheep. Anim. Feed Sci. Technol. 249 https://doi.org/10.1016/j.anifeedsci.2019.01.017.
Lima, P. de M. T., Crouzoulon, P., Sanches, T. P., Zabré, G., Kabore, A., Niderkorn, V., Hoste, H., Do Amarante, A. F. T., Costa-Júnior, L. M., Abdalla, A. L., and other, s., 2019b. Effects of Acacia mearnsii supplementation on nutrition, parasitological, blood parameters and methane emissions in Santa Inês sheep infected with Trichostrongylus colubriformis and Haemonchus contortus. Exp. Parasitol. 207, 107777.
López-Paredes, J., Goiri, I., Atxaerandio, R., García-Rodríguez, A., Ugarte, E., Jiménez-Montero, J. A., Alenda, R., and González-Recio, O., 2020. Mitigation of greenhouse gases in dairy cattle via genetic selection: 1. Genetic parameters of direct methane using noninvasive methods and proxies of methane. J. Dairy Sci. 103 https://doi.org/10.3168/jds.2019-17597.
Mhlongo, L. C. 2018. In vitro assessment of selected ethno-medicinal plants as potential alternatives for the control of gastrointestinal nematodes in sheep and goats.
Mhlongo, L. C., Kenyon, P., and Nsahlai, I. V., 2023. Effect of dietary inclusions of different types of Acacia mearnsii on milk performance and nutrient intake of dairy cows. Vet. Anim. Sci. 21 https://doi.org/10.1016/j.vas.2023.100299.
Mikolayunas-Sandrock, C., Armentano, L. E., Thomas, D. L., and Berger, Y. M., 2009. Effect of protein degradability on milk production of dairy ewes. J. Dairy Sci. 92 https://doi.org/10.3168/jds.2008-1983.
Moats, J., Mutsvangwa, T., Refat, B., and Christensen, D. A., 2018. Evaluation of whole flaxseed and the use of tannin-containing fava beans as an alternative to peas in a co-extruded flaxseed product on ruminal fermentation, selected milk fatty acids, and production in dairy cows. Prof. Anim. Sci. 34 https://doi.org/10.15232/pas.2018-01726.
Molan, A. L., and Faraj, A. M., 2010. The effects of condensed tannins extracted from different plant species on egg hatching and larval development of Teladorsagia circumcincta (nematoda: Trichostrongylidae). Folia Parasitol. (Praha). 57 https://doi.org/10.14411/fp.2010.008.
Na, R., Dong, H., Zhu, Z., Chen, Y., and Xin, H., 2013. Effects of forage type and dietary concentrate to forage ratio on methane emissions and rumen fermentation characteristics of dairy cows in China. Trans. ASABE 56 https://doi.org/10.13031/trans.56.9972.
Nascimento, C. O., Pina, D. S., Cirne, L. G. A., Santos, S. A., Araújo, M. L., Rodrigues, T. C. G. C., Silva, W. P., Souza, M. N. S., Alba, H. D. R., and de Carvalho, G. G. P., 2021. Effects of whole corn germ, a source of linoleic acid, on carcass characteristics and meat quality of feedlot lambs. Animals 11, 267 https://doi.org/https://doi.org/10.3390/ani11020267.
Naumann, H., Sepela, R., Rezaire, A., Masih, S. E., Zeller, W. E., Reinhardt, L. A., Robe, J. T., Sullivan, M. L., and Hagerman, A. E., 2018. Relationships between structures of condensed tannins from Texas legumes and methane production during in vitro rumen digestion. Molecules 23, 2123.
Naumann, H. D., Tedeschi, L. O., Zeller, W. E., and Huntley, N. F. 2017. The role of condensed tannins in ruminant animal production: Advances, limitations and future directions. Rev. Bras. Zootec. 46 https://doi.org/10.1590/S1806-92902017001200009.
Nawab, A., Li, G., An, L., Nawab, Y., Zhao, Y., Xiao, M., Tang, S., and Sun, C., 2020. The Potential Effect of Dietary Tannins on Enteric Methane Emission and Ruminant Production, as an Alternative to Antibiotic Feed Additives-A Review. Ann. Anim. Sci. 20 https://doi.org/10.2478/aoas-2020-0005.
Niderkorn, V., Barbier, E., Macheboeuf, D., Torrent, A., Mueller-Harvey, I., and Hoste, H., 2020. In vitro rumen fermentation of diets with different types of condensed tannins derived from sainfoin (Onobrychis viciifolia Scop.) pellets and hazelnut (Corylus avellana L.) pericarps. Anim. Feed Sci. Technol. 259, 114357.
Niu, M., Appuhamy, J. A. D. R. N., Leytem, A. B., Dungan, R. S., and Kebreab, E., 2016. Effect of dietary crude protein and forage contents on enteric methane emissions and nitrogen excretion from dairy cows simultaneously.in Animal Production Science.
Orlandi, T., Pozo, C. A., Schiavo, J., Oliveira, L., and Kozloski, G. V., 2020a. Effect of using Acacia mearnsii tannin extract as a feed additive on nutritional variables and productive performance in dairy cows grazing a temperate pasture. Anim. Sci. J. 91 https://doi.org/10.1111/asj.13407.
Orlandi, T., Pozo, C. A., Schiavo, J., Oliveira, L., and Kozloski, G. V., 2020b. Impact of a tannin extract on animal performance and nitrogen excretion of dairy cows grazing a tropical pasture. Anim. Prod. Sci. 60, 1183–1188.
Pathak, A. K. 2013. Potential of Using Condensed Tannins to Control Gastrointestinal Nematodes and Improve Small Ruminant Performance. Int. J. Mol. Vet. Res. https://doi.org/10.5376/ijmvr.2013.03.0008.
Patra, A. K., and Puchala, R., 2023. Methane mitigation in ruminants with structural analogues and other chemical compounds targeting archaeal methanogenesis pathways. Biotechnol. Adv., 108268.
Pedreira, M. dos S., Primavesi, O., Lima, M. A., Frighetto, R., Oliveira, S. G. de, and Berchielli, T. T., 2009. Ruminal methane emission by dairy cattle in Southeast Brazil. Sci. Agric. 66, 742–750.
Perna Junior, F., Galbiatti Sandoval Nogueira, R., Ferreira Carvalho, R., Cuellar Orlandi Cassiano, E., and Mazza Rodrigues, P. H., 2022. Use of tannin extract as a strategy to reduce methane in Nellore and Holstein cattle and its effect on intake, digestibility, microbial efficiency and ruminal fermentation. J. Anim. Physiol. Anim. Nutr. (Berl).
Petlum, A., Paengkoum, P., Liang, J. B., Vasupen, K., and Paengkoum, S., 2019. Molecular weight of condensed tannins of some tropical feed-leaves and their effect on in vitro gas and methane production. Anim. Prod. Sci. 59 https://doi.org/10.1071/AN17749.
Quijada, J., Drake, C., Gaudin, E., El-Korso, R., Hoste, H., and Mueller-Harvey, I., 2018. Condensed tannin changes along the digestive tract in lambs fed with sainfoin pellets or hazelnut skins. J. Agric. Food Chem. 66, 2136–2142.
Ricci, P., Chagunda, M. G. G., Rooke, J., M. Houdijk, J. G., Duthie, C.-A., Hyslop, J., Roehe, R., and Waterhouse, A., 2014. Evaluation of the laser methane detector to estimate methane emissions from ewes and steers. J. Anim. Sci. 92, 5239–5250.
Rira, M., Chentli, A., Boufenera, S., and Bousseboua, H. 2015. Effects of Plants Containing Secondary Metabolites on Ruminal Methanogenesis of Sheep in vitro.in Energy Procedia.
de S. Costa, E. I., Ribiero, C. V. D. M., Silva, T. M., Ribeiro, R. D. X., Vieira, J. F., de O. Lima, A. G. V, Barbosa, A. M., da Silva Júnior, J. M., Bezerra, L. R., and Oliveira, R. L., 2021a. Intake, nutrient digestibility, nitrogen balance, serum metabolites and growth performance of lambs supplemented with Acacia mearnsii condensed tannin extract. Anim. Feed Sci. Technol. 272, 114744 https://doi.org/https://doi.org/10.1016/j.anifeedsci.2020.114744.
de S. Costa, E. I., Ribiero, C. V. D. M. V. D. M., Silva, T. M., Ribeiro, R. D. X. X., Vieira, J. F., de O. Lima, A. G. V, Barbosa, A. M., da Silva Júnior, J. M., Bezerra, L. R., Oliveira, R. L., de, E. I., Ribiero, C. V. D. M. V. D. M., Silva, T. M., Ribeiro, R. D. X. X., Vieira, J. F., de, A. G. V., Barbosa, A. M., Silva Júnior, J. M. d., Bezerra, L. R., and Oliveira, R. L., 2021b. Intake, nutrient digestibility, nitrogen balance, serum metabolites and growth performance of lambs supplemented with Acacia mearnsii condensed tannin extract. Anim. Feed Sci. Technol. 272, 114744 https://doi.org/https://doi.org/10.1016/j.anifeedsci.2020.114744.
Saminathan, M., Sieo, C. C., Abdullah, N., Wong, C. M. V. L., and Ho, Y. W., 2015. Effects of condensed tannin fractions of different molecular weights from a Leucaena leucocephala hybrid on in vitro methane production and rumen fermentation. J. Sci. Food Agric. 95 https://doi.org/10.1002/jsfa.7016.
Saminathan, M., Sieo, C. C., Gan, H. M., Ravi, S., Venkatachalam, K., Abdullah, N., Wong, C. M. V. L., and Ho, Y. W., 2016. Modulatory effects of condensed tannin fractions of different molecular weights from a Leucaena leucocephala hybrid on the bovine rumen bacterial community in vitro. J. Sci. Food Agric. 96, 4565–4574.
Sarnataro, C., Spanghero, M., and Lavrenčič, A., 2020. Supplementation of diets with tannins from Chestnut wood or an extract from Stevia rebaudiana Bertoni and effects on in vitro rumen fermentation, protozoa count and methane production. J. Anim. Physiol. Anim. Nutr. (Berl). 104 https://doi.org/10.1111/jpn.13414.
Scharenberg, A., Kreuzer, M., and Dohme, F., 2009. Suitability of sainfoin (Onobrychis viciifolia) hay as a supplement to fresh grass in dairy cows. Asian-Australasian J. Anim. Sci. 22 https://doi.org/10.5713/ajas.2009.80675.
Seymour, W. M., Campbell, D. R., and Johnson, Z. B., 2005. Relationships between rumen volatile fatty acid concentrations and milk production in dairy cows: A literature study. Anim. Feed Sci. Technol. 119 https://doi.org/10.1016/j.anifeedsci.2004.10.001.
Silanikove, N., Gilboa, N., and Nitsan, Z., 2001. Effect of polyethylene glycol on rumen volume and retention time of liquid and particulate matter along the digestive tract in goats fed tannin-rich carob leaves (Ceratonia siliqua). Small Rumin. Res. 40 https://doi.org/10.1016/S0921-4488(00)00209-1.
Szulc, P., Mravčáková, D., Szumacher-Strabel, M., Váradyová, Z., Várady, M., Čobanová, K., Syahrulawal, L., Patra, A. K., and Cieslak, A., 2020. Ruminal fermentation, microbial population and lipid metabolism in gastrointestinal nematode-infected lambs fed a diet supplemented with herbal mixtures. PLoS One 15 https://doi.org/10.1371/journal.pone.0231516.
Terranova, M., Eggerschwiler, L., Ortmann, S., Clauss, M., Kreuzer, M., and Schwarm, A., 2021. Increasing the proportion of hazel leaves in the diet of dairy cows reduced methane yield and excretion of nitrogen in volatile form, but not milk yield. Anim. Feed Sci. Technol. 276, 114790 https://doi.org/10.1016/j.anifeedsci.2020.114790.
Tseu, R. J., Perna Junior, F., Carvalho, R. F., Sene, G. A., Tropaldi, C. B., Peres, A. H., and Rodrigues, P. H. M., 2020. Effect of tannins and monensin on feeding behaviour, feed intake, digestive parameters and microbial efficiency of nellore cows. Ital. J. Anim. Sci. 19 https://doi.org/10.1080/1828051X.2020.1729667.
Tymensen, L. D., Beauchemin, K. A., and McAllister, T. A., 2012. Structures of free-living and protozoa-associated methanogen communities in the bovine rumen differ according to comparative analysis of 16S rRNA and mcrA genes. Microbiol. (United Kingdom) 158 https://doi.org/10.1099/mic.0.057984-0.
Wall, E., Coffey, M. P., and Pollott, G. E. 2012. The effect of lactation length on greenhouse gas emissions from the national dairy herd. Animal 6 https://doi.org/10.1017/S1751731112000936.
Watt, L. J., Clark, C. E. F., Krebs, G. L., Petzel, C. E., Nielsen, S., and Utsumi, S. A., 2015. Differential rumination, intake, and enteric methane production of dairy cows in a pasture-based automatic milking system. J. Dairy Sci. 98 https://doi.org/10.3168/jds.2015-9463.
Williams, S. R. O. O., Hannah, M. C., Eckard, R. J., Wales, W. J., and Moate, P. J., 2020. Supplementing the diet of dairy cows with fat or tannin reduces methane yield, and additively when fed in combination. Animal 14, s464–s472.
Wu, X., Huang, S., Huang, J., Peng, P., Liu, Y., Han, B., and Sun, D., 2021. Identification of the Potential Role of the Rumen Microbiome in Milk Protein and Fat Synthesis in Dairy Cows Using Metagenomic Sequencing. Animals 11, 1247.
Zhang, J., Xu, X., Cao, Z., Wang, Y., Yang, H., Azarfar, A., and Li, S., 2019. Effect of different tannin sources on nutrient intake, digestibility, performance, nitrogen utilization, and blood parameters in dairy cows. Animals 9 https://doi.org/10.3390/ani9080507.