• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Indexing and Abstracting
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of Applied Veterinary Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 10 (2025)
Volume Volume 9 (2024)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 8 (2023)
Volume Volume 7 (2022)
Volume Volume 6 (2021)
Volume Volume 5 (2020)
Volume Volume 4 (2019)
Volume Volume 3 (2018)
Volume Volume 2 (2017)
Volume Volume 1 (2016)
Abd El-Khalek, A., Khodeir, M., Saleh, A., Hassan, A., Abdelrahman, S. (2024). The in vitro Potential Oncolytic Effect of Lentogenic and Velogenic Newcastle Disease Viruses on MCF-7 and Caco-2 Cell Lines Compared to Chemotherapies. Journal of Applied Veterinary Sciences, 9(1), 32-41. doi: 10.21608/javs.2023.237441.1274
Alaa O. Abd El-Khalek; Mohamed H. Khodeir; Amani A. Saleh; Azza Hassan; Sahar S. Abdelrahman. "The in vitro Potential Oncolytic Effect of Lentogenic and Velogenic Newcastle Disease Viruses on MCF-7 and Caco-2 Cell Lines Compared to Chemotherapies". Journal of Applied Veterinary Sciences, 9, 1, 2024, 32-41. doi: 10.21608/javs.2023.237441.1274
Abd El-Khalek, A., Khodeir, M., Saleh, A., Hassan, A., Abdelrahman, S. (2024). 'The in vitro Potential Oncolytic Effect of Lentogenic and Velogenic Newcastle Disease Viruses on MCF-7 and Caco-2 Cell Lines Compared to Chemotherapies', Journal of Applied Veterinary Sciences, 9(1), pp. 32-41. doi: 10.21608/javs.2023.237441.1274
Abd El-Khalek, A., Khodeir, M., Saleh, A., Hassan, A., Abdelrahman, S. The in vitro Potential Oncolytic Effect of Lentogenic and Velogenic Newcastle Disease Viruses on MCF-7 and Caco-2 Cell Lines Compared to Chemotherapies. Journal of Applied Veterinary Sciences, 2024; 9(1): 32-41. doi: 10.21608/javs.2023.237441.1274

The in vitro Potential Oncolytic Effect of Lentogenic and Velogenic Newcastle Disease Viruses on MCF-7 and Caco-2 Cell Lines Compared to Chemotherapies

Article 4, Volume 9, Issue 1, January 2024, Page 32-41  XML PDF (1.17 MB)
Document Type: Original Article
DOI: 10.21608/javs.2023.237441.1274
View on SCiNiTO View on SCiNiTO
Authors
Alaa O. Abd El-Khalek1; Mohamed H. Khodeir2; Amani A. Saleh2; Azza Hassan3; Sahar S. Abdelrahman email orcid 4
1Poultry department, Al-Badrashein Veterinary Unit, Giza, Egypt.
2Veterinary Serum and Vaccine Research Institute, Abbasia, Cairo, Egypt.
3Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt.
4Full professor of pathology, Faculty of Veterinary Medicine, Cairo University, Egypt
Receive Date: 19 September 2023,  Revise Date: 23 October 2023,  Accept Date: 04 November 2023 
Abstract
Cancer is the leading cause of death worldwide, with breast and colorectal cancers being the two most common cancer forms.The present work was designed to investigate the probable oncolytic effect of lentogenic and velogenic Newcastle disease viruses on MCF-7 and Caco-2 cell lines compared to the commonly used chemotherapies as an in vitro preliminary study to further prelude an in vivo study.The cytotoxic effects ofNewcastle disease virus strains NDV/chicken/Egypt/Giza/2015 (velogenic NDV genotype VIID) and Lasota strains, as well as the commonly used chemotherapies (Paclitaxel or Doxorubicin) were investigated on MCF-7 and Caco-2 cell lines at different concentrations. Both the human colorectal adenocarcinoma (Caco-2) and the Michigan Cancer Foundation-7 (MCF-7) human breast cancer cell lines were inoculated with NDV VIID and LaSota at concentrations of 10-2, 10-3, 10-4, and 10-5, Paclitaxel (for MCF-7) at concentrations of 0.5, 1, and 2 μM, and Doxorubicin (for Caco-2) at 0.1, 1 and 10 μM in four replicates each. The cytotoxic effect was performed using a neutral red assay for both virus strains and in combination with chemotherapeutic agents. The present study clarified that both VIID and LaSota strains of NDV, particularly at titers of 10-3 and 10-4 TCID50/ml, respectively, displayed a significant (P ≤ 0.05) cytotoxic effect on both MCF-7 and Caco-2 cell lines. Moreover, the combined treatment of the TCID50 (Tissue Culture Infective Dose 50) doses of both NDV strains and the tested chemotherapies showed a more significant (P ≤ 0.05) cytotoxic effect than the sole use of each. Depending on the results, we can conclude that this study opens the way for further in vivo studies aiming to provide more safe treatment for human cancers, save human lives, and avoid dramatic ends.
Keywords
Caco-2; MCF-7; Oncolytic; Lentogenic; and Velogenic Newcastle disease viruses
Main Subjects
Virology
References
AHLERT, T., and SCHIRRMACHER, V., 1990. Isolation of a human melanoma adapted Newcastle disease virus mutant with highly selective replication patterns. Cancer Res., 50(18):5962–5968.

AL-SHAMMARI, A., AL-NASSRAWEI, H., and KADHIM, A., 2014. Isolation and sero-diagnosis of Newcastle disease virus infection in human and chicken poultry flocks in three cities of middle Euphrates. Kufa Journal for Veterinary Medical Sciences, 5(1): 16-21.

AL-ZIAYDI, A., AL-SHAMMARI, A., and HAMZAH, M., 2020. Propagation of oncolytic Newcastle Disease Virus in Embryonated Chicken Eggs and its Research Applications in Cell lines. Journal of Physics: Conference Series 1664: 012129 IOP Publishing https://doi:10.1088/1742-6596/1664/1/012129

ARNOLD, M., SIERRA, MS., LAVERSANNE, M., SOERJOMATARAM, A., and JEMAL, F., 2017. Global patterns and trends in colorectal cancer incidence and mortality. Gut, 66: 683–691. https://doi.org/10.1136/gutjnl-2015-310912

BRAY, F., FERLAY, J., SOERJOMATARAM, I., SIEGEL, RL., TORRE, LA., and JEMAL, A., 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68: 394–424. https://doi.org/10.3322/caac.21492

EID, SY., EL-READI, MZ., and WINK, M., 2012. Synergism of three-drug combinations of sanguinarine and other plant secondary metabolites with digitonin and doxorubicin in multi-drug resistant cancer cells. Phytomedicine, 19: 1288–1297. https://doi.org/10.1016/j.phymed.2012.08.010

ELANKUMARAN, S., ROCKEMANN, D. and SAMAL, S. K., 2006. Newcastle disease virus exerts oncolysis by both intrinsic and extrinsic caspase-dependent pathways of cell death. J. Virol. 80:7522–7534. https://doi.org/10.1128/jvi.00241-06

FAWWZY, M., RADWAN, A., WAEL, K., AMANI, A., and MOKHTAR, M., 2020. Efficacy of inactivated velogenic Newcastle disease virus genotype VII vaccine in broiler chickens. Veterinary Research Forum, 11 (2). https://doi.org/10.30466%2Fvrf.2019.95311.2295

FREEMAN, AI., ZAKAY-RONES, Z., GOMORI, JM., LINETSKY, E., RASOOLY, L., GREENBAUM, E., ROZENMAN-YAIR, S., PANET, A.,  LIBSON, E., IRVING, C. S., GALUN, E., and SIEGAL, T., 2006. Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Mol Ther., 13:221–8. https://doi.org/10.1016/j.ymthe.2005.08.016

GALANIS, E., 2010. Therapeutic potential of oncolytic measles virus: promises and challenges. Clin Pharmacol Ther 88: 620–625. https://doi.org/10.1038/clpt.2010.211

GOLDENBERG, MM., 1999. Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther., 21(2):309–18. https://doi.org/10.1016/S0149-2918%2800%2988288-0

HEMMINKI, O.,  DOS SANTOS, J. M., and  HEMMINKI, A., 2020.  Oncolytic viruses for cancer immunotherapy. J Hematol Oncol, Jun 29;13(1):84. https://doi.org/10.1186/s13045-020-00922-1

JI, Y., LIU, T., JIA, Y., LIU, B., YU, Q., CUI, X.,  GUO, F. , CHANG, H., and ZHU, Q.,  2017. Two single mutations in the fusion protein of Newcastle disease virus confer hemagglutinin-neuraminidase independent fusion promotion and attenuate the pathogenicity in chickens. Virology., 509:146–51. https://doi.org/10.1016/j.virol.2017.06.021

JORDON, V. C. 1993. Fourteenth Gaddum Memorial Lecture. A current view of tamoxifen for the treatment and prevention of breast cancer. Br J Pharmacol., 110(2):507–17. https://doi.org/10.1111/j.1476-5381.1993.tb13840.x

KESHAVARZ, M.,  AMIR, S., MARYAM, E., FARAH, B., HASSAN, D., and HOSSEIN, K., 2020. Oncolytic Newcastle disease virus reduces growth of cervical cancer cell by inducing apoptosis. Saudi J Biol Sci., 27(1): 47–52. https://doi.org/10.1016/j.sjbs.2019.04.015

KUMAR, R., TIWARI, AK., and CHATURVEDI, U., 2012. Velogenic Newcastle disease virus as an oncolytic virotherapeutics: in vitro characterization. Appl Biochem Biotechnol, 167(7): 2005–2022. https://doi.org/10.1007/s12010-012-9700-1

LAM, H. Y., YEAP, S. K., PIROZYAN, M. R., OMAR, A. R., YUSOFF, K., ABD-AZIZ, S., and ALITHEEN, N. B., 2017. Corrigendum to “Safety and Clinical Usage of Newcastle Disease Virus in Cancer Therapy”. Biomed Res Int., 4529437. https://doi.org/10.1155/2017/4529437

LENTACKER, I., GEERS, B., DEMEESTER, J., DE SMEDT, SC., and SANDERS, NN., 2010. Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved. Mol Ther, 18: 101–108. https://doi.org/10.1038/mt.2009.160

LI, H., KRSTIN, S., WANG, S., and WINK, M., 2018. Capsaicin and Piperine Can Overcome Multidrug Resistance in Cancer Cells to Doxorubicin. Molecules, 23(3): 557. https://doi.org/10.3390/molecules23030557

LI, K., ZHANG, H., QIU, J., LIN, Y., LIANG, J., and XIAO, X., 2016. Activation of cyclic adenosine monophosphate pathway increases the sensitivity of cancer cells to the oncolytic virus. M1. Mol Ther., 24:156–65. https://doi.org/10.1038/mt.2015.172

LIU, T., ZHANG, Yu.,  YUKAI, C., SHAN, J.,  RUI, S.,  JIECHAO, Y., GAO, Z., REN, G., WANG, Z. , YU, Q. ,  SUI, G. , SUN, X., SUN, W., XIAO, W. , and LI D., 2021. Optimization of oncolytic effect of Newcastle disease virus Clone30 by selecting sensitive tumor host and constructing more oncolytic viruses. Gene Therapy, 28:697–717. https://www.nature.com/articles/s41434-020-0145-9

LUO, T. J., WANG, Y., YIN,  H., HUA, J., JING, X., and SUN., 2010. Epigallocatechin gallate sensitizes breast cancer cells to paclitaxel in a murine model of breast carcinoma. Breast Cancer Res, 12: R8. https://doi.org/10.1186%2Fbcr2473

MATVEEVA, O. V., GUO, Z. S., SHABALINA, S. A., and CHUMAKOV, P. M., 2015. Oncolysis by paramyxoviruses: multiple mechanisms contribute to therapeutic efficiency. Molecular Therapy-Oncolytics (2015) 2, 1501. https://doi.org/10.1038/mto.2015.11

MARKERT JMMM, RABKIN, SD., GILLESPIE, GY., TODO, T., HUNTER, WD., and PALMER, CA., 2000. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther., 7(10):867–74. https://doi.org/10.1038/sj.gt.3301205

MYERS, R.G.S., HARVEY, M., SOEFFKER, D., FRENZKE, M., ABRAHAM, K., SHAW, A., SOEFFKER, D., FRENZKE, M., ABRAHAM, K., SHAW, A., ROZENBLATT, S., FEDERSPIEL, M. J., RUSSELL, S. J., and PENG, K.,2005. Oncolytic activities of approved mumps and measles vaccines for therapy of ovarian cancer. Cancer Gene Ther., 12(7):593–9. https://doi.org/10.1038/sj.cgt.7700823

OMAR, ZA., and NSI, T., 2011. National Cancer Registry Report 2007. In: Malaysia Cancer Statistics-Data and Figure. Kuala Lumpur: National Cancer Registry, Ministry of Health Malaysia, 89.

PARATO KASD., FORSYTH, PA., and BELL, JC., 2005. Recent progress in the battle between oncolytic viruses and tumors. Nat Rev Cancer, 5(12):965–76. https://doi.org/10.1038/nrc1750

PARKER, H., CHITCHOLTAN, K., HAMPTON, M. B., and KEENAN, J. I., 2010. Uptake of Helicobacter pylori outer membrane vesicles by gastric epithelial cells. Infect Immun, 78: 5054–5061. https://doi.org/10.1128/iai.00299-10

PECORA, AL., RIZVE, N., and COHEN, G. I., 2002. Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol., 20(9):2251–2266. https://doi.org/10.1200/JCO.2002.08.042

REPETTO, G., ADEL Peso, J. L., and ZURITA., 2008. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc, 3: 1125–1131.

RUGO, H. S. 2004. Bevacizumab in the treatment of breast cancer: rationale and current data. Oncologist., 9:43–9. https://doi.org/10.1634/theoncologist.9-suppl_1-43

SCHIRRMACHER, V. 2016. Fifty years of clinical application of Newcastle disease virus: time to celebrate! Biomedicines, 4:16. https://doi.org/10.3390/biomedicines4030016

SCHIRRMACHER, V., VAN GOOL, S., and STUECKER, W., 2019. Breaking therapy resistance: an update on oncolytic Newcastle disease virus for improvements of cancer therapy. Biomedicines, 7:66. https://doi.org/10.3390/biomedicines7030066

SHAIN, KH.  and DALTON, WS., 2001. Cell adhesion is a key determinant in de novo multidrug resistance (MDR): new targets for the prevention of acquired MDR. Mol Cancer Ther, 1: 69–78.

SIVAKUMARAN, N., SAMARAKOON, S.R., ADHIKARI, A., EDIRIWEERA, M.K., TENNEKOON, KH., MALAVIGE, N., ADHIKARI, A., EDIRIWEERA, M.K., TENNEKOON, K.H.,  MALAVIGE, N.,  THABREW, I., and SHRESTHA, R.L.,  2018. Cytotoxic and Apoptotic Effects of Govaniadine Isolated from Corydalis govaniana Wall. Roots on Human Breast Cancer (MCF-7) Cells. BioMed Research International, 3171348. https://doi.org/10.1155/2018/3171348

SONG, K. Y., WONG, J., GONZALEZ, L., SHENG, G., ZAMARIN, D., and FONG, Y., 2010. Antitumor efficacy of viral therapy using genetically engineered Newcastle disease virus [NDV (F3aa)-GFP] for peritoneally disseminated gastric cancer. J Mol Med (Berl), 88(6):589–596. https://doi.org/10.1007/s00109-010-0605-6

SONG, H., ZHONG LI-PING, JIAN He, YONG HUANG, YONG-XIANG, and ZHAO., 2019. Application of Newcastle disease virus in the treatment of colorectal Cancer. World J Clin Cases,  August 26; 7(16): 2143-2154. http://dx.doi.org/10.12998/wjcc.v7.i16.2143

THAY, B., DAMM, A., KUFER, T. A., WAI SN., and OSCARSSON, J., 2014. Aggregatibacter actinomycetemcomitans outer membrane vesicles are internalized in human host cells and trigger NOD1- and NOD2-dependent NF-κB activation. Infect Immun, 82: 4034–4046. https://doi.org/10.1128/iai.01980-14

UNNO, Y. S. Y. , KONDO, F. , IGARASHI, N., WANG, G., SHIMURA, R., YAMAGUCHI, T.,  IGARASHI, N., WANG, G., SHIMURA, R., YAMAUCHI, T., ASANO, T., SAISHO, H., SEKIYA, S., and SHIRASAWA, H., 2005. Oncolytic viral therapy for cervical and ovarian cancer cells by Sindbis virus AR339 strain. Clin Cancer Res., 11(12):4553–60. https://doi.org/10.1158/1078-0432.CCR-04-2610

WASHBURN, B., and SCHIRRMACHER, V., 2002. Human tumor cell infection by Newcastle Disease Virus leads to upregulation of HLA and cell adhesion molecules and to induction of interferons, chemokines and finally apoptosis. Int J Oncol., 21(1):85–93. https://doi.org/10.3892/ijo.21.1.85

WELCH, B. D., MARCIN, P., LESER, G. P. , ZACHARY, B., KORS, C. A. , PATERSON, R. G.,  BERGMAN, Z. , KORS, C.H. , PATERSON, R.G. , JARDETZKY, T.S. , KOSSIAKOFF, A.A. , and LAMB, R.A.,  2014. Probing the functions of the paramyxovirus glycoproteins F and HN with a panel of synthetic antibodies. J Virol., 88: 11713–25. https://doi.org/10.1128/jvi.01707-14

XU-FENG, Bu., MU-BING, W., ZHI-JIAN, Z., YING-HAI, Z., MI, L., and YU-LAN, Y., 2015. Autophagy is involved in recombinant Newcastle disease virus (rL-RVG)-induced cell death of stomach adenocarcinoma cells in vitro. Int J Oncol., 47: 679-689. https://doi.org/10.3892/ijo.2015.3039

ZAMARIN, D., and PALESE, P., 2012. Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Fut Microbiol., 7(3):347–367. https://doi.org/10.2217/fmb.12.4

ZAMARIN, D., MARTINEZ-SOBRIDO, L., KELLY, K.,   MANSOR, M., SHENG, G., VIGIL, A., GARCIA-SASTRE, A., PALESE, P., and FONG, Y., 2009. Enhancement of oncolytic properties of recombinant newcastle disease virus through antagonism of cellular innate immune responses. Mol Ther. 2009;17(4):697–706. https://doi.org/10.1038/eye.2008.286

ZASADIL, L. M., ANDERSEN, K.A., YEUM, D., ROCQUE, G.B., WILKE, L.G., TEVAARWERK, A.J.,  YEUM, D., ROCQUE, G.B., WILKE, L.G., TEVAARWERK, A.J., RAINES, R.T., BURKARD, M.T., and WEAVER, B.A., 2014.Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles. Sci Transl Med, 6: 229ra43.

ZHOU, J-X., and WINK, M., 2018. Reversal of Multidrug Resistance in Human Colon Cancer and Human Leukemia Cells by Three Plant Extracts and Their Major Secondary Metabolites. Medicines (Basel), 5(4). https://doi.org/10.1126/scitranslmed.3007965

ZHOU, S.,  GRAVEKAMP, C.,  BERMUDES, D., and LIU, K., 2018. Tumor-targeting bacteria engineered to fight cancer. Nat Rev Cancer. Dec; 18(12): 727. https://doi.org/10.1038/s41568-018-0070-z

Statistics
Article View: 359
PDF Download: 474
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.