ABID, W.K., MUKHTAR, Y. H., and Al, M., 2019. Repair of surgical bone defects grafted with hydroxylapatite + β-TCP combined with hyaluronic acid and collagen membrane in rabbits: A histological study. Journal Taibah University Medicine Science, 3,14(1):14-24. doi:
https://doi.org/10.1016/j.jtumed.2018.12.001
ARINZEH, T.L., PETER, S.J., ARCHAMBAULT, M.P., VAN,Den Bos C., GORDON, S., KRAUS, K., and KADIYALA, S., 2003. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. The Journal of Bone and Joint Surgery, 85(10):1927-1935.
https://doi.org/10.2106/00004623-200310000-00010
ATIYAH, A. 2018. Use of eggshell hydroxyapatite implant in repair of radial bone defects in rabbits [master's thesis]. Baghdad: University of Baghdad; p. 31
DAI, Y., LIU, H., LIU, B., WANG, Z., LI, Y., and ZHOU, G., 2015. Porous β-Ca2SiO4 ceramic scaffolds for bone tissue engineering: in vitro and in vivo characterization. Ceramics International, 41(4): 5894-5902
https://doi.org/10.1016/j.ceramint.2015.01.021
FELIPE, R. S., BRUNO, W.M , SIDNEY, W. G.S., LIVIA, de P.C., PEDRO, P.R., JOSE, S.C.J., MARIO, T.J, and LUIS, G.G., 2020. Caprine demineralized bone matrix (DBMc) in the repair of non-critical bone defects in rabbit tibias. A new bone xenograft Acta Cir Bras.,35(8).
doi.org/10.1590/s0102-865020200080000001.
GABRIELA, G., MARCO, G., LEONARDO, V, MARCO, B., MONICA, DEC, MICHELE, B., ENRICO, S. MARIA, C.B., GIANLUCA, C., FEDERICO, M., MARIA, C.M., DANTE, D., 2020. A comprehensive microstructural and compositional characterization of allogenic and xenogenic bone: Application to bone grafts and nanostructured biomimetic coatings. Coatings,10(6):522. DOI:
https://doi.org/10.3390/coatings10060522
GREEN S.A., and THURMON J.C., 1988. Xylazine-a review of its pharmacology and use in veterinary medicine. J Vet Pharmacol Ther;11(4):295-313. DOI: 10.1111/j.1365- 2885.1988.tb00189.x
HUEBNER, K., FRANK, R.M., and GETGOOD,mA., 2019. Ortho-biologics for osteoarthritis. Clinics in sports medicine, 38(1):123-141. doi: 10.1016/j.csm.2018.09.002.
JIN-Y. H., BYUNG-Ho, C., BYUNG-Y,. K., SEONUG-Ho, L., SHI-Jiang Z., and JAE-HYUNG J., 2005. Critical size defect in the canine mandible
. , Oral Surg Oral Med Oral Pathol Oral Radiol Endod , 100(3):296-301.100(3), 0–301.
https://doi.org/10.1016/j.tripleo.2004.12.015
JUNTAVEE, A., JUNTAVEE, N., and SINAGPULO, A.N., 2021. Nano-Hydroxyapatite Gel and Its Effects on Remineralization of Artificial Carious Lesions International Journal of Dentistry, 7256056, p.12. doi.org/10.1155/2021/7256056.
LIND, M., and BUNGERr, C., 2001. Factors stimulating bone formation. Europe Spine Journal , 10 , S102-S109. DOI 10.1007/s005860100269
LYU, S., HUANG, C., YANG, H., and ZHANG, X., 2013. Electrospun fibers as a scaffolding platform for bone tissue repair. Journal of Orthopaedic Research, 31(9): 1382-1389. DOI:
10.1002/jor.22367.
MARRIOT, J.F., WILSON, K.A., LANGLEY, C.A., and BELCHER, D., 2010. Pharmaceutical Compounding and Dispensing. (2nd edition). Pharmaceutical Press Pp. 163
MISTRY, A.S., and MIKOS, A.G., 2005.Tissue engineering strategies for bone regeneration Regenerative Medicine Advance Biochem Engineering Biotechnol . ;94:1-22. doi: 10.1007/b99997.
MOHAMMED, F.M., ALKATTAN, L.M., SHAREEF, A.M., and ISMAIL, H.K., 2023. Evaluation of The Role of Hydroxyapatite Nano Gel as Filling Materials for Improving The Healing of Repaired Tibial Bone Egyptian Journal Veterinary Science, 54( 1), pp. 1-11. doi. 10.21608/EJVS.2022.148249.1360
MOHANNED, F.M., ALKATTAN, L.M., and ISMAIL, H.K., 2022. Histopathological and serological assessment of using rib lamb xenograft reinforced with and without hydroxyapatite nano gel for reconstruction tibial bone defect in dogs. Iraqi Journal of Veterinary Sciences, 36, Supplement I, (69-76). doi: 10.33899/ijvs.2022.135366.2473
MOHANNED, F.M., ALKATTAN, L.M., SHAREEF, A.M., and ISMAIL, H.K., 2022.The role of adding hyaluronic acid in the grafting process for the repair of an experimentally induced tibial defect in dogs' model. Iraqi Journal Veterinary Science, 36(3):555-561. doi: 10.33899/ijvs.2021.130889.1891
MONDAL S., and PAL U., 2019. 3D hydroxyapatite scaffold for bone regeneration and local drug delivery applications. Journal of Drug Delivery Science and Technology, 53, 101131. doi:10.1016/j.jddst.2019.101131.
OZAWA, M., and SUZUKI, S., 2002. Microstructural Development of Natural Hydroxyapatite Originated from Fish-Bone Waste through Heat Treatment," Journal . American Ceram Society ., 85, pp. 1315-1317,.
https://doi.org/10.1111/j.1151-2916.2002.tb00268.x
TUGCU-DEMIROZ, F., ACARTURK, F., and ÖZKUL, A., 2015. Preparation and characterization of bioadhesive controlled-release gels of cidofovir for vaginal delivery. Journal of Biomaterials Science, Polymer Edition. 26(17): 1237-1255. doi:
https://doi.org/10.1080/09205063.2015.1082808
ZEBONE, S.H., EESA, M.J., and BAHAA, F.H., 2020. Efficacy of nano composite porous 3D scaffold of crab shell and al-kharit: Histolgical and radiological for bone repair vivo. Iraqi Journal Veterinary Medicine,44(2):15-24. doi: 10.30539/ijvm.v44i2.973.
ZHENG, Q., WEI, Z., Li, CHENG, W.S., BAO, Li, Y., WEI, J., 2004.Experimental study on the reconstruction of mandibular defects with a new bioactive artificial bone nano-hydroxyapatite/polyamide-66 in dogs. Zhonghua Kou Qiang Yi Xue Za Zhi;39(1):60-2. PMID:
https://pubmed.ncbi.nlm.nih.gov/14989879/
ZHU, L, LIU, Y, WANG, A, ZHU, Z, LI, Y, ZHU, C, CHE, Z, LIU, T, LIU, H, and HUANG, L. 2022. Application of BMP in Bone Tissue Engineering. Front Bioeng Biotechnol., 31,10:810880.
https://doi.org/10.3389/fbioe.2022.810880