• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Indexing and Abstracting
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of Applied Veterinary Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 10 (2025)
Volume Volume 9 (2024)
Volume Volume 8 (2023)
Volume Volume 7 (2022)
Volume Volume 6 (2021)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 5 (2020)
Volume Volume 4 (2019)
Volume Volume 3 (2018)
Volume Volume 2 (2017)
Volume Volume 1 (2016)
Elmenshawy, Y., Ali, K., Samir, A. (2021). Current Evidence of Coryneform Bacteria on The Ocular Surface of Immunocompromised Cats. Journal of Applied Veterinary Sciences, 6(3), 86-93. doi: 10.21608/javs.2021.81235.1087
Yasmine M. Elmenshawy; Khaled M. Ali; Ahmed Samir. "Current Evidence of Coryneform Bacteria on The Ocular Surface of Immunocompromised Cats". Journal of Applied Veterinary Sciences, 6, 3, 2021, 86-93. doi: 10.21608/javs.2021.81235.1087
Elmenshawy, Y., Ali, K., Samir, A. (2021). 'Current Evidence of Coryneform Bacteria on The Ocular Surface of Immunocompromised Cats', Journal of Applied Veterinary Sciences, 6(3), pp. 86-93. doi: 10.21608/javs.2021.81235.1087
Elmenshawy, Y., Ali, K., Samir, A. Current Evidence of Coryneform Bacteria on The Ocular Surface of Immunocompromised Cats. Journal of Applied Veterinary Sciences, 2021; 6(3): 86-93. doi: 10.21608/javs.2021.81235.1087

Current Evidence of Coryneform Bacteria on The Ocular Surface of Immunocompromised Cats

Article 12, Volume 6, Issue 3, July 2021, Page 86-93  XML PDF (1.31 MB)
Document Type: Original Article
DOI: 10.21608/javs.2021.81235.1087
View on SCiNiTO View on SCiNiTO
Authors
Yasmine M. Elmenshawy1; Khaled M. Ali email orcid 2; Ahmed Samir3
1Veterinarian,Veterinary Ophthalmology Clinic, Cairo, Egypt.
2Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
3Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
Receive Date: 18 June 2021,  Revise Date: 07 July 2021,  Accept Date: 15 July 2021 
Abstract
Monomicrobial and polymicrobial infections may occur on the cornea, conjunctiva and the eyelid of cats.Corynebacterium species are categorized as nonpathogenic bacteria that are regularly detected in the conjunctiva of healthy cats. It has been reported that Corynebacterium species have been shown to be potentially harmful in a variety of tissues including ocular tissues, skin, and mucous membranes. The purpose of the current study was to investigate the presence of Corynebacterium spp. on the ocular surface and its antimicrobial sensitivity and susceptibility pattern.  We investigated Corynebacterium species on the ocular surface and reviewed various species of Corynebacterium in terms of their antimicrobial susceptibility and the underlying molecular resistance mechanisms. The risk for Corynebacterium-related ocular infections in cats with low immunity, such as poor nutrition, corneal epithelial damage due to trauma, corneal perforation, lagophthalmos, chronic incurable glaucoma, long-lasting corneal sequestrum, and long-term use of topical steroids have been identified. 64 cats (78 eyes) of different ages and both sexes with various ocular disorders were swabbed. Corynebacterium spp. represented 34.6 % (n=27) of the collected sample and found to be susceptible to common antibiotics. Therefore, the use of antimicrobials for the treatment of ocular infections caused by Corynebacterium species should be a rational and sensible strategy along with provision of immunostimulants.
Keywords
Bacteria; Cat; Corynebacterium; Eye infections
Main Subjects
Bacteriology
References
ALI, K.M. AND HASSAN, M.H., 2020.Visual outcome evaluation of complicated perforating corneal injuries after surgical repair in 45 cats. Turk J Vet Anim Sci., 44: 894-903. doi:10.3906/vet-2003-107.

ANDREW, S., ENGUYEN, A., JONES G.L. AND BROOKS D.E., 2003. Seasonal effects on the aerobic bacterial and fungal conjunctival flora   of normal thoroughbred brood mares in Florida. Veterinary Ophthalmology, 6(1): 45-50, doi: 10.1046/j.1463-5224.2003.00265.x.

AOKI, T., KITAZAWA, K., DEGUCHI, H., AND SOTOZONO, C., 2021. Current Evidence for Corynebacterium on the Ocular Surface. Microorganisms. 27;9(2):254.

BONELLI, F. et al. 2014. Conjunctival bacterial and fungal flora in clinically normal sheep. Veterinary Record, 1(1):1-4. doi: 10.1136/vropen-2013-000017.

BUTTNER, J.N., SCHNEIDER, M., CSOKAI, J., MU¨ LLER E, AND EULE, J.C. 2018. Microbiota of the conjunctival sac of 120 healthy cats. Vet Ophthalmol., 22(3):328-336.

CLINICAL AND LABORATORY STANDARD INSTITUTE. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria, 3rd edition (M45). Wayne (PA): The Institute; 2015.

COGEN, A.L. et al. 2008. Skin microbiota: a source of disease or defense? British Journal of Dermatology, 158(3):442-455.  doi: 10.1111/j.1365-2133.2008.08437.x.

DARDEN, J.E., SCOTT, E.M., ARNOLD, C., SCALLAN, E.M., SIMON, B.T., AND SUCHODOLSKI, J.S. 2019. Evaluation of the bacterial ocular surface microbiome in clinically normal cats before and after treatment with topical erythromycin. PLoS One., 11;14(10):e0223859.

DAS, S., RAO, A.S., SAHU, S.K., AND SHARMA, S., 2016. Corynebacterium spp. as causative agents of microbial keratitis. Br J Ophthalmol., 100(7):939-943.

DAVIS, C.P., 1996. Normal flora. In Medical Microbiology, 4th edition.; University of Texas Medical Branch at Galveston: Galveston, TX, USA,.

ESPÍNOLA, M.B., AND LILENBAUM, W., 1996. Prevalence of bacteria in the conjunctival sac and on the eyelid margin of clinically normal cats. J Small Anim Pract.;37:364‐366.

FOTI, M. FISICHELLA, V. AND GIACOPELLO C., 2013. Detection of methicillin-resistant Staphylococcus aureus (MRSA) in the microbial flora from the conjunctiva of healthy donkeys from Sicily (Italy). Veterinary Ophthalmology, 16(2): 89.

GASKIN, J.M., 1980. Microbiology of the canine and feline eye. Vet Clin North Am Small Anim Pract., 10(2): 303–316.

GERDING, P.A., McLAUGHLIN, S.A. AND TROOP, M.W., 1988. Pathogenic bacteria and fungi associated with external diseases in dogs: 131 cases (1981-1986). J. Am. Vet. Med. Assoc., 193:242-244.

GOLDREICH, J.E., FRANKLIN-GUILD, R.J. AND LEDBETTER, E.C., 2019. Feline bacterial keratitis: Clinical features, bacterial isolates, and in vitro antimicrobial susceptibility patterns. Vet Ophthalmol, 23(1):90-96 https://doi: 10.1111/vop.12693.

HUSSEIN, S. A., 2018. Bacterial Eye Infection of Cats. Multi-Knowledge Electronic Comprehensive Journal for Education And Science Publications (MECSJ),(11): 611-622.

JOHNS, I.C. BAXTER, K., BOOLER, H., HICKS, C. AND MENZIES-GOW N., 2011. Conjunctival bacterial and fungal flora in healthy horses in the UK. Veterinary Ophthalmology, 14(3): 195-199, doi: 10.1111/j.1463-5224.2010.00867.x.

KIEŁBOWICZ, Z., PŁONECZKA-JANECZKO, K., BANIA, J., BIEROWIEC, K. AND KIEŁBOWICZ, M., 2015. Characteristics of the bacterial flora in the conjunctival sac of cats from Poland. J Small Anim Pract, 56(3):203-206.

MOUNEY, M.C. STILES, J., TOWNSEND, W.M., GUPTILL, L. AND WEESE J.S., 2015. Prevalence of methicillin-resistant Staphylococcus spp. in the conjunctival sac of healthy dogs. Veterinary Ophtalmology, 18(2): 123-126. doi: 10.1111/vop.12130.

MUSCH, D.C., SUGAR, A. AND MEYER, R.F., 1983. Demographic and predisposing factors in corneal ulceration. Arch Ophthalmol, 101(10):1545-8. 

OLLIVIER, F. J., 2003. Bacterial corneal diseases in dogs and cats. Clin Tech Small Anim Pract, 18(3):193-198.

ORIÁ, A., GOMES JUNIOR, D., ARRAES, E., ESTRELA-LIMA, A., PINNA, M. MENESES, Í. AND MARTINS FILHO, E., 2014. Tear production, intraocular pressure and conjunctival microbiota, cytology and histology of New Zealand rabbits (Oryctolagus cuniculus). Pesquisa Veterinária Brasileira, 34(10):1024-1028, https://doi.org/10.1590/s0100-736x2014001000016

PRADO, M.R., ROCHA, M.F., BRITO, E.H., GIRÃO, M.D., MONTEIRO, A.J., TEIXEIRA, M.F. AND SIDRIM, J.J., 2005. Survey of bacterial microorganisms in the conjunctival sac of clinically normal dogs and dogs with ulcerative keratitis in Fortaleza, Ceará, Brazil. Veterinary Ophthalmology, 8(1):33-37. doi: 10.1111/j.1463-5224.2005.04061.x.

SANTOS L. G. F., ALMEIDA A. B. P. F., SILVA M. C., OLIVEIRA J. T., DUTRA V. AND SOUZA V. R. F., 2009. Conjunctival microbiota of healthy dogs with ophthalmic conditions Microbiota conjuntival de cães hígidos e com afecções oftálmicas. Acta Scientiae Veterinariae, 37(2): 65-169. doi: 10.5216/cab.v14i4.19210.

SAUER, P., ANDREW, S.E., LASSALINE, M. ET AL. 2003. Changes in antibiotic resistance in equine bacterial ulcerative keratitis (1991–2000): 65 horses. Veterinary Ophthalmology , 6: 309–313.

TAMARZADEH, A., ARAGUI-SOOREH, A. 2014. Bacterial flora of the conjunctiva in healthy mules. Reveu MédicineVéterinaire, 165 (11-12): 334-337.

TOLAR, E.L., HENDRIX, D.V., ROHRBACH, B.W. ET AL. 2006. Evaluation of clinical characteristics and bacterial isolates in dogs with bacterial keratitis: 97 cases (1993–2003). Journal of the American Veterinary Medical Association, 228: 80–85.

Statistics
Article View: 479
PDF Download: 568
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.