Mousbah, A., Abd El-Samie, M., A. Elbehery, M., A. El-Nady, I. (2020). Immunohistochemistry And Hormonal Investigation For Spermatogenesis Restoration In Degenerated Testes Of Rats After Bone Marrow Stem Cells Transplantation. Journal of Applied Veterinary Sciences, 5(4), 47-54. doi: 10.21608/javs.2020.118002
Ahmed M. Mousbah; Mohammed E. Abd El-Samie; Mohammed A. Elbehery; Ismail A. El-Nady. "Immunohistochemistry And Hormonal Investigation For Spermatogenesis Restoration In Degenerated Testes Of Rats After Bone Marrow Stem Cells Transplantation". Journal of Applied Veterinary Sciences, 5, 4, 2020, 47-54. doi: 10.21608/javs.2020.118002
Mousbah, A., Abd El-Samie, M., A. Elbehery, M., A. El-Nady, I. (2020). 'Immunohistochemistry And Hormonal Investigation For Spermatogenesis Restoration In Degenerated Testes Of Rats After Bone Marrow Stem Cells Transplantation', Journal of Applied Veterinary Sciences, 5(4), pp. 47-54. doi: 10.21608/javs.2020.118002
Mousbah, A., Abd El-Samie, M., A. Elbehery, M., A. El-Nady, I. Immunohistochemistry And Hormonal Investigation For Spermatogenesis Restoration In Degenerated Testes Of Rats After Bone Marrow Stem Cells Transplantation. Journal of Applied Veterinary Sciences, 2020; 5(4): 47-54. doi: 10.21608/javs.2020.118002
Immunohistochemistry And Hormonal Investigation For Spermatogenesis Restoration In Degenerated Testes Of Rats After Bone Marrow Stem Cells Transplantation
1Biotechnology department, Faculty of Agriculture, Al-azhar University, Egypt.
2Department of Chemistry, Animal Health Research Institute, Dokki, Giza, Egypt
3Department of Biotechnology, Faculty of Agriculture, Cairo, Al-Azhar University, Egypt.
4Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, Egypt.
Receive Date: 29 June 2020,
Revise Date: 05 August 2020,
Accept Date: 15 September 2020
Abstract
Stem cell therapy is considered an important and innovative tool for applied research in andrology, especially in infertility; therefore, it was later adapted as potential therapeutic agents. This study aimed to evaluate rat mononuclear bone marrow cells' ability to recover testis cells in cyclophosphamide (CTX)-treated rats and to assess its effects on hormonal and histopathological changes. The bone marrow cells were harvested from femurs and tibias of rats and purified by a Histopaque gradient. Mononuclear bone marrow cells transplantation was performed by intravenous injection of cells in cyclophosphamide-treated animals. Three weeks after transplantation, blood samples were collected and analyzed for hormonal assay. In addition, the testes were collected for histological and histopathological determination. The results depicted that the serum levels of all tested hormones were significantly different among the three experimental groups G1 (control, healthy animals), G2 (CTX induced infertility and untreated) and G3 (CTX induced infertility and treated with stem cells). FSH and LH levels were significantly increased in G2 (CTX) compared to G1 and G3. Total and free testosterone levels were slightly higher in G3 compared to G2. Mononuclear bone marrow cell transplantation promoted cellular reorganization of the seminiferous epithelium. Also, spermatogenesis regeneration was improved. In conclusion, bone marrow stem cells can regenerate the damaged testicular elements and hence restore hormonal regulation in cyclophosphamide treated rat. Therefore, the treatment of male infertility and testosterone deficiency could be therapeutically treated by using stem cells.
ALIAKBARI, F., YAZDEKHASTI, H., ABBASI, M., MONFARED, MH, BAAZM, M. 2016. Advances in Cryopreservation of Spermatogonial Stem Cells and Restoration of Male Fertility. Microscopy Res. And Tech. 79:122–129.
Babu, S.R., Saghnani, M.D.,Swarana, M., Padmavathi, P., Reddy, P.P. 2004. Evaluation of FSH, LH and Testosterone levels in different subgroups of infertile males. Indian J. Clin. Biochem., 19(1): 45-49.
Bakhtiary, Z., Shahrooz, R., Ahmadi, A., Zarei, L. 2014. Evaluation of antioxidant effects of crocin on sperm quality in cyclophosphamide treated adult mice. Vet. Res. Forum, 5:213–8
Barthold , J.S., Wang, Y., Kolon, T.F.Kollin, C., Nordenskjöld, A., Olivant Fisher, A., et al., 2015. Phenotype specific association of the TGFBR3 locus with nonsyndromic cryptorchidism. J. Urol., 193(5): 163.
BAZHANOV, N., YLOSTALO, JH, BARTOSH, TJ, TIBLOW, A., MOHAMMADIPOOR, A., FOSKETT, A., PROCKOP, DJ 2016. Intraperitoneally infused human mesenchymal stem cells form aggregates with mouse immune cells and attach to peritoneal organs. Stem cell research & therapy, 7(1): 27.
CAKICI, C., BUYRUKCU, B., DURUKSU, G., HALILOGLU, AH, AKSOY, A., ISIK, A., et al., 2013. Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: The sperm generation. BioMed Res. Int., (21) 529589
Cao, Y., Wang, X., Li, S., Wang, H., Yu, L., Wang, P. 2017. The Effects of l‐Carnitine Against Cyclophosphamide‐Induced Injuries in Mouse Testis. Basic & Clin. Pharmacol. & toxicol., 120(2): 152-158.
Chang , C., Chen, Y.T., Yeh, S.D., Xu, Q., Wang, R.S., Guillou, F., Lardy, H., Yeh, S. 2004. Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proc. Natl. Acad. Sci. USA, 4, 101(18): 6876-81.
Cheng , J.C., Chang, H.M., Fang, L., Sun, Y.P., Leung, P.C. 2015. TGF-β1 up-regulates connexin43 expression: a potential mechanism for human trophoblast cell differentiation. J. of Cellular Physiology, 230 (7): 1558–1566.
Comish, PB, Drumond, A.L., Kinnell, H.L., et al., 2014. Fetal cyclophosphamide exposure induces testicular cancer and reduced spermatogenesis and ovarian follicle numbers in mice. PLoS ONE, 9(4):e93311
Drumond, A.L., Weng, C.C., Wang, G., Chiarini-Garcia, H., Eras-Garcia, L., Meistrich, M.L. 2011. Effects of multiple doses of cyclophosphamide on mouse testes: accessing the germ cells lost, and the functional damage of stem cells. Reprod. Toxicol, 32:395–406
Drusenheimer, N., Wulf, G., Nolte, J., Lee, J.H., Dev, A., Dressel, R., Gromoll, J., Schmidtke, J., Engel, W., Nayernia, K. 2007. Putative human male germ cells from bone marrow stem cells. Soc. Reprod. Fertil. Suppl. 63: 69– 76.
EBATA, KT, YEH, JR, ZHANG, X., NAGANO, M.C. 2008. The application of biomarkers of spermatogonial stem cells for restoring male fertility. Dis Markers, 24:267–276
EBATA, KT, YEH, JR, ZHANG, X., NAGANO, M.C.2011. Soluble growth factors stimulate spermatogonial stem cell divisions that maintain a stem cell pool and produce progenitors in vitro. Experimental Cell Res., 317(10): 1319–1329
Elangovan, N., Chiou, T.J., Tzeng, W.F., Chu, S.T.2006. Cyclophosphamide treatment causes impairment of sperm and its fertilizing ability in mice. J. Toxicol., 222(1-2): 60-70.
Eliopoulos, N., Zhao, J., Bouchentouf, M., Forner, K., Birman, E., Yuan, S., et al.2010. Human marrow-derived mesenchymal stromal cells decrease cisplatin renotoxicity in vitro and in vivo and enhance survival of mice post intraperitoneal injection. Am J Physiol Renal Physiol., 299: F1288–98.
Emadi, A., Jones, R.J., Brodsky, R.A., 2009. Cyclophosphamide and cancer: golden anniversary. Nat. Rev. Clin. Oncol., 6: 638–647.
Fazeli, Z., Abedindo, A., Omrani, M.D., Ghaderian, S.M.H. 2018. Mesenchymal Stem Cells (MSCs) Therapy for Recovery of Fertility: a Systematic Review. Stem Cell Rev. and Rep. 14: 1–12.
Freireich, E.J., Gehan, E.A., Rall, D.P., Schmidt, L.H., Skipper, H.E. 1986. Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. J. of Cancer Chemother. Rep., 50(14):219-244.
Gerber, J., Heinrich, J., Brehm, R. 2016. Blood-testis barrier and Sertoli cell function: lessons from SCCx43KO mice, Reprod., 151(2): 15-27.
GHASEMZADEH-HASANKOLAEI M., BATAVANI, R., ESLAMINEJAD MB, SAYAHPOUR F. 2016. Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells into the Testes of Infertile Male Rats and New Germ Cell Formation. Int. J. of Stem Cells, 9 (2): 250-263
GNECCHI, M., MELO, LG, 2009. Bone marrow-derived mesenchymal stem cells: Isolation, expansion, characterization, viral transduction, and production of conditioned medium. Methods Mol. Biol., 482 (18): 281–294
GOU, S., LIU, T., LI, X., CUI, J., WAN, C., WANG, C. 2012. Pancreatic ductal cells acquire mesenchymal characteristics through cell fusion with bone marrow-derived mesenchymal stem cells and sirt1 attenuates the apoptosis of hybrid cells. Cells Tissues Organs, 196(36): 129–136
Goddard, I., Bouras, M., Keramidas, M., Hendrick, J.C., Feige, J.J., Benahmed, M.2000. Transforming growth factor-beta receptor types I and II in cultured porcine Leydig cells: expression and hormonal regulation, Endocrinol., 141(6): 2068-74.
Hollenbach, J., Jung, K., Noelke, J., Gasse, H., Pfarrer, C., Koy, M., Brehm, R.2018. Loss of connexin43 in murine Sertoli cells and its effect on blood-testis barrier formation and dynamics, PLoS One, 1,13(6): e0198100.
Hou, L., Dong, Q., Wu, Y., Sun, Y., Guo, Y., Huo, Y., 2016. Gonadotropins facilitate potential differentiation of human bone marrow mesenchymal stem cells into Leydig cells in vitro. Kaohsing J. Med. Sci., 32: 1-9.
Howell, S.J., Radford, J.A., Ryder, W.D.J., Shalet, S.M. 1999. Testicular function after cytotoxic chemotherapy: evidence of Leydig cell insufficiency. J. clinical oncol., 17(5): 1493-1493.
Hwang, N.S., Zhang, C., Hwang, Y., Varghese, S. 2009. Mesenchymal stem cell differentiation and roles in regenerative medicine. John Wiley Sons, Inc. 1: 97–106
Kadam, P., Van Saen, D., Goossens, E. 2017. Can mesenchymal stem cells improve spermatogonial stem cell transplantation efficiency?. Androl., 5(1): 2-9.
Kørbling, M., Estrov, Z., 2003.Adult stem cells for tissue repair—a new therapeutic concept?. N. Engl. J. Med., 349: 570–582.
LEATHERMAN, J. 2013. Stem cells supporting other stem cells. Front. Genet., 4, 257 Lue, Y., Erkkila, K., Liu, P.Y., Ma, K., Wang, C., Hikim, A.S., Swerdloff, R.S. 2007. Fate of bone marrow stem cells transplanted into the testis: potential implication for men with testicular failure. Am. J. Pathol. 170: 899–908.
McLachlan , R.I., Donnell, L.O., Meachem, S.J., Stanton, P.G., Kretser, D.M., Pratis, K., Robertson, D.M. 2002. Identification of specific sites of hormonal regulation in spermatogenesis in rats, monkey and man. J. Recent Prog. Horm. Res., 57: 14-79.
Meyerrose, T.E., De Ugarte, D.A., Hofling, A.A., Herrbrich, P.E., Cordonnier, T.D., Shultz, L.D., et al. 2007. In vivo distribution of human adipose-derived mesenchymal stem cells in novel xenotransplantation models. Stem Cells., 25: 220–7.
MONSEFI, M., FEREYDOUNI, B., ROHANI, L., TALAEI, T. 2013. Mesenchymal stem cells repair germinal cells of seminiferous tubules of sterile rats. Iran. J. Reprod. Med., 11, 537–544
Nayernia, K., Lee, J.H., Drusenheimer, N., Nolte, J., Wulf, G., Dressel, R., Gromoll, J., Engel, W. 2006. Derivation of male germ cells from bone marrow stem cells. Lab Invest, 86: 654–663.
Neosar, 2013. Cyclophosphamide. BC Cancer Agency, Cancer Drug Manual, 1-12.
O'Hara , L., Smith, L.B. 2015. Androgen receptor roles in spermatogenesis and infertility. Best Pract. Res. Clin. Endocrinol. Metab., 29(4): 595-605.
O'Shaughnessy, PJ 2014. Hormonal control of germ cell development and spermatogenesis. Semin. Cell Dev. Biol., 29: 55-65.
Peak, T.C., Haney, N.M., Wang, W., DeLay, K.J., Hellstrom, W.J. 2016. Stem cell therapy for the treatment of Leydig cell dysfunction in primary hypogonadism. World j. stem cells, 8(10): 306.
Pourmoghadam, Z., Aghebati‐Maleki, L., Motalebnezhad, M., Yousefi, B., Yousefi, M. 2018. Current approaches for the treatment of male infertility with stem cell therapy. J. cellular physiology, 6455–6469. DOI: 10.1002/jcp.26577.
Sarraj, M.A., Chua, H.K., Umbers, A., Loveland, K.L., Findlay, J.K., Stenvers, K.L. 2007. Differential expression of TGFBR3 (betaglycan) in mouse ovary and testis during gonadogenesis. Growth Factors, 25(5): 334-45.
Sarraj, M.A., Escalona, R.M., Umbers, A., Chua, H.K., Small, C., Griswold, M., Loveland, K., Findlay, J.K. Stenvers, K.L. 2010. Fetal testis dysgenesis and compromised Leydig cell function in Tgfbr3 (beta glycan) knockout mice. Biol. Reprod., 82(1): 153-62.
Snykers, S., Vanhaecke, T. and Rogiers, V.2006. Isolation of rat bone marrow stem cell. J. of Methods in Mol.Bio., 320:13-18.
SONG, YH, PINKERNELL, K., ALT, E. 2011. Stem cell-induced cardiac regeneration: Fusion/mitochondrial exchange and/or transdifferentiation? Cell Cycle, 10 (37): 2281–2286
Spradling, A., Drummond-Barbosa , D. Kai, T. 2001. Stem cell finds its niche. Nature, 414: 98-104.
Suvarna, K.S., Layton, C., Bancroft, J.D.2013. Bancroft's Theory and Practice of Histological Techniques. 7th ed. Oxford, Churchill Livingstone Elsevier, 2013. pp.654
Subhan, F., Tahir, F., Ahmad, R., Khan, Z.D. 1995. Oligospermia and its relation with hormonal profile. Pak. Med. Assoc., 45(9): 246- 247.
TAMADON, A., MEHRABANI, D., RAHMANIFAR, F., JAHROMI, AR et al., 2015. Induction of Spermatogenesis by Bone Marrow-derived Mesenchymal Stem Cells in Busulfan-induced Azoospermia in Hamster. Int J Stem Cells, 8: 134-145
Tsai, M.Y., Yeh, S.D., Wang, R.S., Yeh , S., Zhang, C., Lin, H.Y., Tzeng, C.R., Chang, C. 2006. Differential effects of spermatogenesis and fertility in mice lacking androgen receptor in individual testis cells. Proc. Natl. Acad. Sci., U S A., 12, 103(50): 18975-80.
Walker, W.H. 2011. Testosterone signaling and the regulation of spermatogenesis. Taylor Fr., 1: 37–41.
Wang, Q., Li, W., Zhang, Y., Yuan, X., Xu, K., Yu, J., Chen, Z., Beroukhim, R., et al., 2009. Androgen Receptor Regulates a Distinct Transcription Program in Androgen-Independent Prostate Cancer. Cell., 138(2): 245–256.
Weinbauer, G.F., Luetjens, C.M., Simoni, M., Nieschlag, E. 2010. Physiology of Testicular Function. Springer: 11– 59
Weinbauer, G.F., Nieschlag, E. 1995. Gonadotropin control of testicular germ cell development. Adv. Exp. Med. Biol., 317: 55-65.
Wilson, T., Stark, C., Holmbom, J., Rosling, A., et al., 2010. Fate of bone marrow-derived stromal cells after intraperitoneal infusion or implantation into femoral bone defects in the host animal. J Tissue Engineering., 345806.
Yazawa, T., Mizutani, T., Yamada, K., Kawata , H., Sekiguchi , T., Yoshino, M., Kajitani, T., Shou, Z., Umezawa, A., Miyamoto, K. 2006. Differentiation of adult stem cells derived from bone marrow stroma into Leydig or adrenocortical cells. Endocrinol., 147: 4104–4111.
Yousefi, F., Ebtekar, M., Soleimani, M., Soudi, S., Hashemi, S.M. 2013. Comparison of in vivo immunomodulatory effects of intravenous and intraperitoneal administration of adipose-tissue mesenchymal stem cells in experimental autoimmune encephalomyelitis (EAE). Int Immunopharmacol., 17:608–16.
Zabul, J., Mierzejewski, W., Rogoza, A. 1994. Usefulness of examining gonadotropin hormones and testosterone in men with abnormal semen. Ginekol-pol., 65 (2): 71-74.
Zahkook, S.A., Atwa, A., Shahat, M., Mansour, A.M., Bakry, S.2014. Mesenchymal stem cells restore fertility in induced azoospermic rats following chemotherapy administration. J. Reprod. Infertil., 5: 50-57.
ZHANG, D., LIU, X., PENG, J., HE, D., LIN, T., ZHU, J., LI, X., ZHANG, Y., WEI, G. 2014. Potential spermatogenesis recovery with bone marrow mesenchymal stem cells in an azoospermic rat model. Int J Mol Sci., 15:13151-13165
Zhu, B., Zheng, Y.F., Zhang, Y.Y., Cao, Y.S., Zhang, L., Li, X. G., Zhao, Z. G. 2015. Protective effect of L-carnitine in cyclophosphamide-induced germ cell apoptosis. J. Zhejiang Univ. Sci., B., 16(9): 780-787.