EFFICACY OF FREEZE-DRIED INACTIVATED RIFT VALLEY FEVER VACCINE

Atwa, M.H¹, Maha Raafat Abd El-Fadeel¹, Heba A. Khafagy², Alaa A.El-Kholy³, Ebtsam E.Z.Kotb³, Marwa, F.Mahmoud³

¹Veterinary Serum and Vaccine Research Institute (VSVRI), Abbasiya, Cairo, Egypt.
²Central Laboratory for Evaluation of Veterinary Biologics (CLEVB),), Abbasiya, Cairo, Egypt.
³Animal Reproduction Research Institute (ARRI), Haram, Giza, Egypt.

Corresponding Author E-Mail: dr.hebakhaagy@gmail.com; ORCID ID: https://orcid.org/0000-0003-4548-1824

ABSTRACT

Rift Valley Fever (RVF) is an acute infectious zoonotic arthropod-born viral disease, affecting many species of animals and it causes great economic losses in animal wealth and has a zoonotic implication. Eradication of mosquito and vaccination is an important and best method for preventing and controlling the disease. This study was applied for the preparation and evaluation of Rift Valley Fever inactivated vaccine in a lyophilized form that is reconstituted at the time of inoculation using saponin that acts as an adjuvant. The prepared vaccine was proved to be sterile and safe. ED₅₀ Potency test of the prepared vaccine in mice gave 0.0010 ED₅₀/ML (permissible limit less than 0.02/ml). Sheep were vaccinated with 1ml S/C of the prepared lyophilized inactivated RVF vaccine and another group was vaccinated S/JC with 1ml of Aluminum hydroxide inactivated RVF vaccine. The immune response of different vaccinated sheep groups was evaluated using SNT and ELISA. The Prepared lyophilized inactivated RVF vaccine gave protective NI at the second-week post-vaccination (2.1 and 0.286 OD) then reach to peak at the 4th week post-vaccination (3.28 and 0.343OD) then began to decline till ten months (1.7 and 0.241 OD), while the Aluminum hydroxide inactivated RVF vaccine gave protective NI at the second-week post-vaccination (1.7 and 0.277 OD) then reach to its NI peak at the 4th week (3.13 and 0.312 OD) then began to decline till ten months (1.73 and 0.228 OD). From the obtained results, it was found that the prepared lyophilized inactivated RVF vaccine was safe, potent and gave approximately similar immune response as aluminum hydroxide inactivated RVF vaccine but it is better as it reduces time and effort consuming during vaccine production.

Keywords: ELISA, NI, RVF, Saponin, SNT.

INTRODUCTION

Rift Valley fever (RVF) is an acute viral anthropoid zoonotic disease (Ndye et al., 2015). It is caused by the Rift Valley Fever virus which a member of Phlebovirus of the Bunyaviridae, single-stranded RNA virus (Samia, 2011). It is transmitted by mosquito. The disease mainly affects sheep, goats, cattle, camels, buffaloes, and humans also cause fever, salivation, weakness, fetid diarrhea, decreased milk production with explosive abortions in pregnant animals (FAO, 2003). Finally, it causes a headache, conjunctivitis with ocular complications in the human CDC (2015). RVF outbreaks were associated with mosquito spreading (Nguku et al., 2006).

The disease was first reported among livestock in Kenya around 1915, but the virus was not isolated until 1931 (CDC, 2007). It was introduced to Egypt through the importation of infected ruminants and camels from Sudan (Sellers et al., 1982) and reappeared in 1993 in Egypt (El-Gabery et al., 1994). It occurred in Egypt at Belbes and Zagazig Governorate. The virus has been isolated and designated (Imam et al., 1979). The best tool for protecting the animal population and indirectly humane being is the vector control and vaccination (Abdel Ghaffar et al., 1979). There are two types of RVF vaccine live attenuated smith burn RVF vaccine and inactivated RVF vaccine (Faburay et al., 2017), but using it is limited due to teratogenic and aborteogenic effect (Kathryn et al., 1991).
In Egypt, the inactivated RVF vaccine is used
with booster dose must be given to induce suitable
protection level and period. The ultimate goal of this
work is Production of inactivated Rift valley fever
vaccine in the lyophilized form to decrease the time
and efforts consumed during vaccine preparation as
well as minimization of the economic efficacy of the
vaccine production process.

MATERIALS AND METHODS

Materials

Experimental animals

Unweaned baby mice

Ten, three to four days old baby mice were
supplied by Breeding Unit, Veterinary Serum and
Vaccine Research Institute (VSVRI), Abbasia, Cairo,
were used for detection of virus inactivation
complection, each mice was inoculated I/C with 0.1 ml
inactivated RVF virus which was supplied RVF
Department, (VSVRI). Abbasia, Cairo

Adult mice

Sixty Swiss albino weaned mice and specific
pathogen-free, 21-30 days old were supplied by the
Breeding Unit, (VSVRI) and it was used in ED_{50}
potency test. Fifty mice (10 for each dilution) for
vaccine dilutions and ten kept as control.

Newly born lamb

Five apparently healthy newly born lambs (7-10
days old) were used for safety tests of prepared freeze-
dried inactivated RVF Vaccine; it was supplied by
Breeding Unit, (VSRI).

Sheep

Healthy fifteen adult local breed sheep of 3-4
month old were used for evaluation of their immune
response to the prepared vaccine (potency test). All of
these animals were screened using SNT and proved to
be free from RVF antibodies. They were housed under
strict hygienic measures in insect-proof stables
receiving balanced ration and adequate water.

RVFV (ZH 501): The original virus was obtained
from RVF Department, (VSVRI). It was used for the
preparation of lyophilized Rift valley fever vaccine,
SNT, and ED_{50}.

Tissue Culture (Vero Cells): The cells were grown
and maintained according to Macpherson and
Stocker, (1962) it was used for virus propagation,
titration, vaccine preparation, and serum neutralization
test. It was obtained from RVF Department, Veterinary
Serum And Vaccine Research Institute (VSVRI).

Reagents

Binary Ethyleneimine (BEI): 0.1M Binary
Ethyleneimine (BEI) stock solution prepared from 2-
brromoethyamine hydrobromide (Aldrich Chemical
Co., LTD) and 0.2 N NaOH, according to Bahnemann
(1990) and Mark (2004) It was used for Rift valley
fever virus inactivation process.

Saponin: was obtained from ACROS co. (New Jersey,
USA). And used as vaccine diluents, adjuvant for
lyophilized vaccines. The concentration of the saponin
1mg/ dose or (ml vaccine) was added according to
Samuilenko (1982) and Nehal et al., (2017)
Stabilizer: It was prepared to contain 2.5%
lactalbumin hydrolysate and 5% sucrose OIE (2018).

Aluminum hydroxide inactivated RVF vaccine: Tissue culture inactivated Rift Valley Fever vaccine
was supplied by RVF Department at VSVRI.

Methods

Virus titration and inactivation RVF virus was
propagated and titrated in Vero cells according to El-
Nimr, (1980) and Taha, (1982) and inactivated by
Binary Ethyleneimine (BEI) according to Bahnemann
(1990) and Mark (2004)

Validation of virus inactivation completion Samples
from the inactivated virus was checked for the presence
of the active virus, in Tissue culture according to OIE
(2012) and in baby mice according to El Nimr (1980)
and Eman (1995)

Preparation of Lyophilized RVF vaccine a master
seed RVFV (ZH501) was propagated on Vero cells for
an additional three passages to prepare vaccine
working virus. From the vaccine seed virus, a vaccine
stock viral fluid was prepared by carrying another one
passage on Vero cells and the bulk virus harvest fluid
was kept at -70 °C till titration and sterility tests were
done. Vaccine stock viral fluid having virus titer should
not less than 8 log_{10} TCID_{50}/ml Mayer et al., (1978).

Vaccine stock viral fluid was inactivated by 0.001M
BEI at 37°C for 24 hours Nehal, (2006). The
inactivated virus was mixed with an equal volume of
stabilizer then distributed in vials (2ml/vial) and
subjected for freeze-drying. This vaccine formula
reconstituted in saponin (1mg/dose) as an adjuvant at
the time of inoculation.

Vaccine Quality Control

Sterility Test: Samples were taken from the final
product as well as the virus fluid before inactivation
process and tested on Nutrient agar medium,
Sabouraud dextrose agar medium, Thioglycolate
medium (Oxford, England) and PPLO (broth) medium
for detection of bacterial fungal and mycoplasma

Safety Test : Three lambs were inoculated with 10 ml
of prepared lyophilized vaccine (five ml S/C and five
ml I/P) , while two were kept as control. Lambs were
observed daily to two weeks for any rise of
temperature, death, and any abnormal clinical signs
post-vaccination.
Potency test to prepared lyophilized RVF vaccine (ED$_{50}$):

In adult mice: It was applied according to Randall et al., (1964). Fivefold dilutions of the prepared RVF vaccine were diluted from 1:1 to 1:625. Ten mice for each dilution each mice was inoculated with 0.2ml I/P as the first dose followed by booster dose one-week interval, all inoculated mice were challenged with 0.1ml of RVFV containing $10^3 - 10^4$ MIPLD$_{50}$/ml, Mice were kept under observation for 21 days where deaths were recorded daily and ED$_{50}$/ml was calculated according to Reed and Muench (1938).

In sheep: Fifteen sheep were divided into three groups (five sheep/group). Each group was inoculated with two doses, one for vaccination then second for bolstering. The groups were divided as follow:

<table>
<thead>
<tr>
<th>Gp No.</th>
<th>GP 1</th>
<th>GP 2</th>
<th>GP 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of vaccine</td>
<td>Lyophilized RVF vaccine</td>
<td>ALOH gel inactivated RVF vaccine</td>
<td>Non vaccinated (was kept as control negative)</td>
</tr>
<tr>
<td>Dose</td>
<td>1ml</td>
<td>1ml</td>
<td>1ml</td>
</tr>
<tr>
<td>Rout</td>
<td>S/C</td>
<td>S/C</td>
<td>S/C</td>
</tr>
</tbody>
</table>

Samples were collected in sterile dry clean screw-capped bottles, then left at room temperature for 1-2 hours then placed in the refrigerator overnight, and then the serum was centrifuged at 3000 rpm for 10 minutes, then kept at ~20° C until used for antibody detection by SNT and ELISA.

Collection of samples: The blood samples were collected at weekly intervals, then monthly till the end of the experiment period post-vaccination for serological tests (SNT, ELISA).

For the Evaluation of the humoral immune response, blood samples were collected from vaccinated and non vaccinated sheep were tested 12 months for the presence of antibody against RVF virus by SNT according to the method of constant serum-virus dilution procedure. The serum-neutralizing index was calculated according to Reed and Muench (1938) and indirect ELISA according to Voller (1976).

RESULTS

Propagation of RVF virus (ZH501) in cell culture:

The virus was produced under Biosafety measures; it was propagated in Vero cells for three successive times to increase the virus yield. A prominent CPE of RVF virus in Vero cells appeared as rounding and aggregation in clusters (grapes like aggregation). As shown in Photo (1, 2), Titer was 10^8 log$_{10}$ TCID$_{50}$/ml.

Photo 1: Normal Vero cells
Photo 2: CPE of RVFV on Vero cells

Titration of RVF virus ZH501 in cell cultures: The virus titer was increased gradually in the first passage from $10^{7.5}$ to $10^{7.7}$ TCID$_{50}$/ml in the second passage till reaching an output at the 3rd passage of 10^{8} TCID$_{50}$/ml. The harvested virus of the 3rd passage was used for vaccine production.

Validation of virus inactivation completion: in baby mice and in tissue culture inactivated RVF virus was safe when they were inoculated in mice as no mortalities or any signs of illness were observed on inoculated mice during the test (10 days) in baby mice. And no CPE or any effect on Vero Cells was observed.

Table 1: Results of safety test in Vero cells and baby mice

<table>
<thead>
<tr>
<th>Type of virus</th>
<th>Vero cells</th>
<th>Baby mice I/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEI inactivated RVF virus</td>
<td>No CPE</td>
<td>0/10 10/10</td>
</tr>
</tbody>
</table>

CPE: cytopathic effect.

Quality Control of prepared vaccine

Sterility: The prepared vaccine gave satisfactory results. It was free from mycoplasma, aerobic, anaerobic bacteria and fungi.

Safety test: No rise in body temperature with no postvaccinal reaction and any abnormal signs.

Potency test of the prepared vaccine in mice (ED50): The lyophilized inactivated RVF vaccines gave 0.0010 ED$_{50}$/ML while the Aluminium hydroxide gel inactivated RVF vaccine gave 0.0019 ED$_{50}$/ML (permissible limit less than 0.02/ml).

The humoral immune response of vaccinated sheep using serum neutralization test (SNT) and ELISA was shown in tables (3-4) and figure (1-2).
Table 2: Mean of neutralizing indices of sheep vaccinated with aluminum hydroxide and lyophilized inactivated RVF vaccine:

<table>
<thead>
<tr>
<th>Time of Sampling (weeks post-vaccination)</th>
<th>Mean neutralizing indices at different period post-vaccination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group 1</td>
</tr>
<tr>
<td>Pre</td>
<td>0.39</td>
</tr>
<tr>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>2</td>
<td>2.1</td>
</tr>
<tr>
<td>Booster dose</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3.28</td>
</tr>
<tr>
<td>8</td>
<td>3.25</td>
</tr>
<tr>
<td>12</td>
<td>3.22</td>
</tr>
<tr>
<td>16</td>
<td>3.08</td>
</tr>
<tr>
<td>20</td>
<td>2.88</td>
</tr>
<tr>
<td>24</td>
<td>2.72</td>
</tr>
<tr>
<td>28</td>
<td>2.62</td>
</tr>
<tr>
<td>32</td>
<td>2.30</td>
</tr>
<tr>
<td>36</td>
<td>2.1</td>
</tr>
<tr>
<td>40</td>
<td>1.8</td>
</tr>
<tr>
<td>44</td>
<td>1.24</td>
</tr>
<tr>
<td>48</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Group 1: inoculated with prepared RVF vaccine adjuvanted with saponin the time of inoculation.
Group 2: inoculated with ALOH inactivated RVF vaccine.
Group 3: control negative.
Protective index = 1.5
Table 3: Mean values of ELISA optical density in sheep vaccinated with different vaccinated sheep groups

<table>
<thead>
<tr>
<th>Time of Sampling (weeks post-vaccination)</th>
<th>Mean optical densities at different period post-vaccination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group 1</td>
</tr>
<tr>
<td>Pre</td>
<td>0.019</td>
</tr>
<tr>
<td>1</td>
<td>0.19</td>
</tr>
<tr>
<td>2</td>
<td>0.286</td>
</tr>
<tr>
<td>4</td>
<td>0.343</td>
</tr>
<tr>
<td>8</td>
<td>0.332</td>
</tr>
<tr>
<td>12</td>
<td>0.312</td>
</tr>
<tr>
<td>16</td>
<td>0.298</td>
</tr>
<tr>
<td>20</td>
<td>0.289</td>
</tr>
<tr>
<td>24</td>
<td>0.279</td>
</tr>
<tr>
<td>28</td>
<td>0.268</td>
</tr>
<tr>
<td>32</td>
<td>0.257</td>
</tr>
<tr>
<td>36</td>
<td>0.249</td>
</tr>
<tr>
<td>40</td>
<td>0.241</td>
</tr>
<tr>
<td>44</td>
<td>0.206</td>
</tr>
<tr>
<td>48</td>
<td>0.198</td>
</tr>
</tbody>
</table>

Group 1: inoculated with prepared lyophilized RVF vaccine adjuvanted with saponine at the time of inoculation.
Group 2: inoculated with ALOH inactivated RVF vaccine,
Group 3: control negative.
Positive titer (Cut Off) = 0.224
DISCUSSION

The progress in vaccine production is directed towards the selection of the proper adjuvant that can elaborate high and long-standing immunity (Alsaid et al., 2020), but using a large number of adjuvants during vaccine production will increase the vaccine's cost. So this study aimed to produce a new type of inactivated RVF vaccine using the process of lyophilization which enhances the stability and thus the marketability of a product. This study was designed to prepare Lyophilized RVF vaccine inactivated with BEI and reconstituted at the time of inoculation in saponin (1mg/dose) as an adjuvant and compare its efficacy with the efficacy of aluminum hydroxide inactivated RVF vaccine.

Concerning the RVF virus was titrated using the infectivity method according to Reed and Muench, (1938) using the Vero cell line. The titer of the virus was 10³TCID₅₀/ml. CPE on the Vero cell appeared rounded and aggregated in clusters as shown in photo (1). By detecting the validation of virus inactivation completion in mice and tissue culture, we found a satisfactory results for 14 days post-vaccination with no clinical abnormalities or deaths. The prepared lyophilized RVF vaccine was proven to be sterile and free from mycoplasma, aerobic, anaerobic bacteria and fungal contamination. These results agreed with Wassel et al., (1996) and Code of Federal Regulations, (2005), reported that the final product should be free from mycoplasma, bacteria, and fungi.

The prepared vaccine was safe in lambs as there is no rise in body temperature which remained within the normal range for 14 days post-vaccination with no clinical abnormalities or deaths. The prepared lyophilized inactivated RVF vaccine gave 0.0010 ED₅₀/ml in mice and this agreed with Randall et al., (1964); Maha et al., (2017) who used ED₅₀ test in the evaluation and detect potency of inactivated vaccine which are less than 0.02 /ml in mice as recommended by WHO (1983).

Immunization in sheep vaccinated with aluminum hydroxide inactivated RVF vaccine gave protective titer at second-week post-vaccination (1.7) then reach to peak at 4th week (3.13) then began to decline till ten months (1.73) as illustrated at the table (2) and figure (1), this agrees with El Karamany (1981) who found the neutralizing antibodies in sheep and goats vaccinated with formaldehyde inactivated RVF vaccine could be detected seven days post-vaccination and reached a level of 3.7 at 40 days post-vaccination. The neutralizing antibody reaches to the peak (2.7) at 12 weeks post-vaccination and continues in protective level till 28 weeks post-vaccination, these results agree with that obtained by Gihan and Elian, (1997) who found the protective antibody level of sheep vaccinated with inactivated vaccine till seven months. These results also agreed with that obtained by Abdel Samea et al., (1994) who explained that sheep vaccinated with inactivated RVF vaccine had a protective antibody titre till seventh month post vaccination. While the prepared lyophilized RVF vaccine gave protective titre at second-week post-vaccination (2.1), then reach to peak at 4th week (3.28) then began to decline till the end of tenth-month post-vaccination (1.8), these results backed to using of saponin as adjuvant as shown in table (3) and this agrees with Oda et. al., (2000) who reported that Saponin based adjuvants can modulate the cell-mediated immune system as well as to enhance antibody production and have the advantage that only a low dose is needed for adjuvant activity. The ELISA results come in parallel to results obtained by SNT (Coenraad et al., 1998).

CONCLUSION

From these studies, It can be concluded that, the lyophilized inactivated RVF vaccine is highly immunogenic and economic than the ALOH inactivated RVF vaccine so we recommended using lyophilized inactivated RVF vaccine in the field.

REFERENCES

COENRAAD H., JEAN-MARC S., ARNOUD A., MICHAEL B.; LUKAS B., KLAUS C., ARNOLD DAAS, JOHAN DESCAMPS, ROLAND B., JULIA F.,

OIE TERRESTRIAL MANUAL. 2012. RVF Chapter 2.1.15. –pp (334-343).

SAMULENKO, A.Y.A. 1982. Dependence of immunity on the dose of adjuvant (with Saponin in FMD vaccine). Veterinary, Moscow, USSR, No. 9, 28-29, blokanbinant, shehelkov, Moskovskaya Oblast, USSR.

How to cite this article:
Atwa, M.H et al. (2020). Outbreak Mauritania Open Forum Infectious Diseases. 102