ALEMDAR, N. T., DEMIR, S., YULUG, E., KULABER, A., DEMIR, E. A., ERDOGAN, N. S., BALKAN, B., and YILMAZ, O., 2025. Acetamiprid-induced testicular toxicity in mice: ameliorative effect and potential mechanisms of morin. BMC Complementary Medicine and Therapies,
25(1): 1–12.
https://doi.org/10.1186/s12906-025-04983-y
AL-SHALCHI, R. F., and MOHAMMAD, F. K., 2024. Alterations of neurobehavioral performance, blood and brain cholinesterase activities and cholesterol levels by repeated statin treatments in mice. Bulletin of Pharmaceutical Sciences Assiut University,
47(1): 415–425.
https://doi.org/10.21608/bfsa.2024.270145.2033
AL-ZUBAIDY, M. H., I., and AMIN, S. M., 2019. Cholinesterase inhibition in chicks treated with manganese chloride. Iraqi Journal of Veterinary Sciences. 32(2):37-42.
https://doi.org/10.33899/ijvs.2019.153875
AL-ZUBAIDY, M. H. I., and MOHAMMAD, F. K., 2007. Metoclopramide protection of diazinon-induced toxicosis in chickens. Journal of Veterinary Science,
8(3): 249–254.
https://doi.org/10.4142/jvs.2007.8.3.249
BALLINGER, E., C., ANANTH, M., TALMAGE, D., A., and ROLE, L., W. 2016. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron,
91(6): 1199–1218.
https://doi.org/10.1016/j.neuron.2016.09.006
BLOKHINA, O., VIROLAINEN, E., and FAGERSTEDT, K., V., 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany,
91(2): 179–194.
https://doi.org/10.1093/aob/mcf118
CAMMAROTA, M., BEVILAQUA, L. R. M., BONINI, J. S., ROSSATTO, J. I., MEDINA, J., H., and IZQUIERDO, N., 2004. Hippocampal glutamate receptors in fear memory consolidation. Neurotoxicity Research, 6: 205–211.
https://doi.org/10.1007/bf03033222
DHOUÏB, I. B., ANNABI, A., DOGHRI, R., REJEB, I., DALLAGI, Y., BDIRI, Y., JAMOUSSI, K., ABID-ESSEFI, S., and BÉJAOUI, S., 2017. Neuroprotective effects of curcumin against acetamiprid-induced neurotoxicity and oxidative stress in the developing male rat cerebellum: biochemical, histological, and behavioral changes. Environmental Science and Pollution Research, 24: 27515–27524.
https://doi.org/10.1007/s11356-017-0331-5
EL-BIALY, B. E. S., ABD ELDAIM, M. A., HASSAN, A., and ABDEL-DAIM, M. M., 2020. Ginseng aqueous extract ameliorates lambda-cyhalothrin–acetamiprid insecticide mixture for hepatorenal toxicity in rats: role of oxidative stress-mediated proinflammatory and proapoptotic protein expressions. Environmental Toxicology, 35:(2), 124–135.
https://doi.org/10.1002/tox.22848
EL-GENDY, K. S., ALY, N. M., MAHMOUD, F. H., and ALLAH, D. A., 2022. Toxicological assessment of sublethal dose of acetamiprid in male mice and the efficacy of quercetin. Pesticide Biochemistry and Physiology, 184: 105078.
https://doi.org/10.1016/j.pestbp.2022.105078
GASMI, S., CHAFAA, S., LAKROUN, Z., ROUABHI, R., TOUAHRIA, C., KEBIECHE, M., CHERIF, H., and BOUKHALF, A. A., 2019. Neuronal apoptosis and imbalance of neurotransmitters induced by acetamiprid in rats. Toxicological and Environmental Health
Sciences, 11: 305–311.
https://doi.org/10.1007/s13530-019-0417-1
GASMI, S., KEBIECHE, M., ROUABHI, R., TOUAHRIA, C., LAHOUEL, A., LAKROUN, Z., CHERIF, H., and BOUKHALFA, A., 2017. Alteration of membrane integrity and respiratory function of brain mitochondria in the rats chronically exposed to a low dose of acetamiprid. Environmental Science and Pollution Research, 24: 22258–22264.
https://doi.org/10.1007/s11356-017-9901-9
KARA, M., YUMRUTAS, O., DEMIR, C. F., OZDEMIR, H. H., BOZGEYIK, I., COSKUN, S., KAZAZ, S. N., KAZAZ, N., and ALTUNAY, S., 2015. Insecticide imidacloprid influences cognitive functions and alters learning performance and related gene expression in a rat model. International Journal of Experimental Pathology, 96(5): 332–337.
https://doi.org/10.1111/iep.12139
KARACA, B. U., ARICAN, Y. E., BORAN, T., BINAY, S., OKYAR, A., KAPTAN, E., AYDIN, M. S., KILINC, A., and AKSOY, M., 2019. Toxic effects of subchronic oral acetamiprid exposure in rats. Toxicology and Industrial Health, 35 (11–12): 679–687.
https://doi.org/10.1177/0748233719893203
KHALIL, H. A., and FARIS, G. A.
, 2025. A Study Investigating the Synergistic Analgesic Effects of Nefopam and Medetomidine in a Multimodal Pain Management Approach in Mice. Journal of Applied Veterinary Sciences, 10 (3): 129 136.
https://doi.org/10.21608/javs.2025.389940.1628
KHOVARNAGH, N., and SEYEDALIPOUR, B., 2021. Antioxidant, histopathological and biochemical outcomes of short-term exposure to acetamiprid in liver and brain of rat: The protective role of N-acetylcysteine and S-methylcysteine. Saudi Pharmaceutical Journal,
29(3): 280–289.
https://doi.org/10.1016/j.jsps.2021.02.004
MITSUSHIMA, D., SANO, A., and TAKAHASHI, T., 2013. A cholinergic trigger drives learning-induced plasticity at hippocampal synapses. Nature Communications, 4(1): 2760.
https://doi.org/10.1038/ncomms3760
OLAJIDE, O. J., GBADAMOSI, I. T., YAWSON, E. O., AROGUNDADE, T., LEWU, F. S., OGUNRINOLA, K. Y., ABUBAKAR, O. L., and SULEIMAN, M., 2021. Hippocampal degeneration and behavioral impairment during Alzheimer-like pathogenesis involves glutamate excitotoxicity. Journal of Molecular Neuroscience, 71: 1205–1220.
https://doi.org/10.1007/s12031-020-01747-w
ONAOLAPO, O. J., ONAOLAPO, A. Y., MOSAKU, T. J., AKANJI, O. O., and ABIODUN, O., R., 2012. Elevated plus maze and Y-maze behavioral effects of subchronic, oral low dose monosodium glutamate in Swiss albino mice. Journal of Pharmacy and Biological Sciences,
3(4): 21–27.
http://dx.doi.org/10.9790/3008-0342127
PETRIE, A., and WATSON, P., 2013. Statistics for veterinary and animal science. 3rd ed. John Wiley & Sons.
POTHU, U. K., THAMMISETTY, A. K., and NELAKUDITI, L. K., 2019. Evaluation of cholinesterase and lipid profile levels in chronic pesticide exposed persons. Journal of Family Medicine and Primary Care,
8(6): 2073–2078.
https://doi.org/10.4103/jfmpc.jfmpc_440_19
SAITO, H., FURUKAWA, Y., SASAKI, T., KITAJIMA, S., KANNO, J., and TANEMURA, K., 2023. Behavioral effects of adult male mice induced by low-level acetamiprid, imidacloprid, and nicotine exposure in early life. Frontiers in Neuroscience, 17:1239808.
https://doi.org/10.3389/fnins.2023.1239808
SANO, K., ISOBE, T., YANG, J., WIN-SHWE, T. T., YOSHIKANE, M. NAKAYAMA, S., F., NAKAJIMA, D., KASHIWA, H., and SHINKAI, Y., 2016. In utero and lactational exposure to acetamiprid induces abnormalities in socio-sexual and anxiety-related behaviors of male mice. Frontiers in Neuroscience, 10: 228.
https://doi.org/10.3389/fnins.2016.00228
SHAMSI, M., SOODI, M., SHAHBAZI, S., and OMIDI, A., 2021. Effect of acetamiprid on spatial memory and hippocampal glutamatergic system. Environmental Science and Pollution Research, 28: 27933–27941.
https://doi.org/10.1007/s11356-020-12314-6
SINGH, T. B., MUKHOPADHAYAY, S. K., SAR, T. K., and GANGULY, S., 2012. Acetamiprid induces toxicity in mice under experimental conditions with prominent effect on the hematobiochemical parameters. Journal of Drug Metabolism and Toxicology,
3(6): 134.
http://dx.doi.org/10.4172/2157-7609.1000134
SZYNDLER, J., PIECHAL, A., BLECHARZ-KLIN, K., SKÓRZEWSKA, A., MACIEJAK, P., WALKOWIAK, J., TURZYŃSKA, D., LEWANDOWSKA, A., and WISŁOWSKA, A., 2006. Effect of kindled seizures on rat behavior in water Morris maze test and amino acid concentrations in brain structures. Pharmacological Reports, 58(1): 75–82.PMID: 16531633
TERAYAMA, H., ENDO, H., TSUKAMOTO, H., MATSUMOTO, K., UMEZU, M., KANAZAWA, T., MITSUHASHI, T., SHIMIZU, T., KAKUTANI, H., and TANAKA, M., 2016. Acetamiprid accumulates in different amounts in murine brain regions. International Journal of Environmental Research and Public Health, 13(10): 937.
https://doi.org/10.3390/ijerph13100937