Highly Pathogenic Avian Influenza Virus H5N1 in Africa : Current Situation and Control Prospects

Document Type : Review Article

Authors

1 Ministère de l’Agriculture et de l’Elevage (MAG/EL), Direction de la Santé Animale (DSA), BP : 12091, Niamey, Niger

2 Université Dan Dicko Dankoulodo de Maradi (UDDM), Faculté d’Agronomie et des Sciences de l’Environnement (FASE), BP: 465, Maradi, Niger

3 Faculté des Sciences Agronomiques (FSA), Université Djibo Hamani de Tahoua (UDH), BP : 255, Tahoua, Niger

4 Food and Agriculture Organisation of the United Nations-Emergency Centre for Transboundary Animal Diseases, BP : 656, Ouagadougou, Burkina Faso

5 Laboratoire Central de l’Elevage de Niamey (LABOCEL), Service de Parasitologie, BP: 485, Niamey, Níger

6 Ministère de l’Agriculture et de l’Elevage (MAG/EL), Direction des Statistiques (DS), BP : 12091, Niamey, Niger

7 Université de Lomé (UL), Centre d’Excellence Régional sur les Sciences Aviaires(CERSA), 01 BP: 1515, Lomé, Togo

10.21608/javs.2025.410801.1700

Abstract

Since it first appeared in poultry in Scotland in 1959, Highly Pathogenic Avian Influenza (HPAI) H5N1 has greatly impacted the global poultry industry and public health. In less than seventy years, it has spread to ninety-six countries in Asia, Europe, Africa, and America. In Africa, the first cases were reported in Nigeria in 2006. Since then, the virus has spread rapidly to around twenty African countries, becoming enzootic and raising concerns for public health. This study aims to present a review of the recent literature on HPAI H5N1 in Africa in order to contribute to understand of its epidemiology and to explore strategies for prevention, preparedness, and control of a future panzootic. The diagnosis of H5N1 HPAI in the laboratory is based on the identification and characterisation of the virus. With advances in science and technology, new rapid and less expensive diagnostic tests have been developed. However, some of these tests cross-react with H5 viruses. In Africa, efforts are still needed to better equip laboratories for the diagnosis of avian influenza. Despite the controversy surrounding the role of vaccination in controlling outbreaks of HPAI H5N1 in poultry, recent studies have shown that vaccination plays an effective role when there is a high degree of antigenic similarity between vaccine strains and wild strains. The decision to use poultry vaccination as a means of controlling the H5N1 HPAI virus is guided by the epidemiological and socio-economic context of each country.

Keywords

Main Subjects


AIREY, M., and SHORT, K.R., 2024. High pathogenicity avian influenza in Australia and beyond: could avian influenza cause the next human pandemic? Microbiol. Aust 45(3), 155–158. https://doi.org/10.1071/MA24040
AKANBI, O.B., and TAIWO, V.O., 2014. Mortality and Pathology Associated with Highly Pathogenic Avian Influenza H5N1 Outbreaks in Commercial Poultry Production Systems in Nigeria. Int. Sch. Res. Notices. Article ID 415418, 1-7. http://dx.doi.org/10.1155/2014/415418
AKANBI, O.B., TAIWO, V.O., OBISHAKIN, E.T., EKONG, P.S., BARDE, I.J., and MESEKO, C.A., 2020. Features of Highly Pathogenic Avian Influenza (HPAI) H5N1 in Domestic Poultry.  Viruses and Viral Infections in Developing Countries. https://doi.org/10.5772/intechopen.86098
ALDERS, R., AWUNI, J.A., BAGNOL, B., FARRELL, P., and DE HAAN, N., 2013. Impact of Avian Influenza on Village Poultry Production Globally. EcoHealth.  https://doi.org/10.1007/s10393-013-0867-x
ALEXANDER, D.J. 2008. Avian Influenza – Diagnosis. Zoonoses Public Health 55: 16-23. https://doi.org/10.1111/j.1863-2378.2007.01082.x
ALVAREZ, J., BOKLUND, A., DIPPEL, S., DÓREA, F., FIGUEROLA, J., HERSKIN, M.S., MICHEL, V., CHUECA, M.Á.M., NANNONI, E., NIELSEN, S.S., et al., 2025. Preparedness, prevention and control related to zoonotic avian influenza. EFSA Journal 23 : e9191. https://doi.org/10.2903/j.efsa.2025.9191
BREIMAN RF, NASIDI A, KATZ MA, NJENGA MK, and VERTEFEUILLE J., 2007. Preparedness for Highly Pathogenic Avian Influenza Pandemic in Africa. Emerg Infect Dis 13 (10): 1453-1458. https://doi.org/10.3201/eid1310.070400
CATTOLI, G., MONNE, I., FUSARO, A., JOANNIS, T.M., LOMBIN, L.H., ALY, M.M., ARAFA, A.S., STURM-RAMIREZ, K.M., COUACY-HYMANN, E., AWUNI, J.A., et al., 2009. Highly pathogenic avian influenza virus subtype H5N1 in Africa: a comprehensive phylogenetic analysis and molecular characterisation of isolates. PLoS One 4 (3), e4842. https://doi.org/10.1371/journal.pone.0004842
CHAKRABORTY, C., and BHATTACHARYA, M., 2024. Evolution and mutational landscape of highly pathogenic avian influenza strain A(H5N1) in the current outbreak in the USA and global landscape. Virol 600 :110246. https://doi.org/10.1016/j.virol.2024.110246
CHAROSTAD, J., RUKERD, M.R.Z., MAHMOUDVAND, S., BASHASH, D., HASHEMI, S.M.A., NAKHAIE, M., and ZANDI, K., 2023. A comprehensive review of highly pathogenic avian influenza (HPAI) H5N1: An imminent threat at the doorstep. Travel Med Infect Dis 55. https://doi.org/10.1016/j.tmaid.2023.102638
EFSA PANEL ON ANIMAL HEALTH AND ANIMAL WELFARE (AHAW), European Union Reference Laboratory for Avian Influenza, NIELSEN, S.S., ALVAREZ, J., BICOUT, D.J., CALISTRI, P., CANALI, E., DREWE, J.A., GARIN‐BASTUJI, B., GONZALES ROJAS, J.L., GORTÁZAR, C., and HERSKIN, M., 2023. Vaccination of poultry against highly pathogenic avian influenza–part 1. Available vaccines and vaccination strategies. Efsa Journal 21(10) : e08271. https://doi.org/10.2903/j.efsa.2023.8271
FAO AND WORLD ORGANISATION FOR ANIMAL HEALTH., 2025. Global Strategy for the Prevention and Control of High Pathogenicity Avian Influenza (2024–2033) – Achieving sustainable, resilient poultry production systems. Rome. https://doi.org/10.4060/cd3840en
FASANMI, O.G., ODETOKUN, I.A., BALOGUN, F.A., and FASINA, F.O., 2017. Public health concerns of highly pathogenic avian influenza H5N1 endemicity in Africa. Vet. World 10(10) : 1194-1204. https://doi.org/10.14202/vetworld.2017.1194-1204
FASANMI, O.G., KEHINDE, O.O., LALEYE, A.T., EKONG, B., AHMED, S.S.U., and FASINA, F.O., 2018. National surveillance and control costs for highly pathogenic avian influenza H5N1 in poultry: A benefit-cost assessment for a developing economy, Nigeria, Vet. Sci. Res 119,127-133, https://doi.org/10.1016/j.rvsc.2018.06.006.
FASINA, F.O., BISSCHOP, S.P.R., JOANNIS, T.M., LOMBIN, L.H., and ABOLNIK, C., 2009. Molecular characterization and epidemiology of the highly pathogenic avian influenza H5N1 in Nigeria. Epidemiol Infect 137(4) : 456–463. https://doi.org/10.1017/S0950268808000988
GARG, S., REINHART, K., COUTURE, A., KNISS, K., DAVIS, T., KIRBY, M.K., MURRAY, E.L., and OLSEN, S.J., 2024. Highly Pathogenic Avian Influenza A(H5N1) Virus Infections in Humans. N Engl J Med 392 (9) :843-854. https://doi.org/10.1056/NEJMoa2414610
GASHAW, M. 2020. A Review on Avian Influenza and its Economic and Public Health Impact. Int J Vet Sci Technol. 4(1): 015-027. https://www.sciresliterature.org/Veterinary/IJVST-ID31.pdf
GONZALES, J.L., ROBERTS, H., SMIETANKA, K., BALDINELLI, F., ORTIZ-PELAEZ, A., and VERDONCK, F., 2018. Assessment of low pathogenic avian influenza virus transmission via raw poultry meat and raw table eggs. EFSA Journal 16, e05431. https://doi.org/10.2903/j.efsa.2018.5431
GRAZIOSI, G., LUPINI, C., CATELLI, E., and CARNACCINI, S., 2024. Highly Pathogenic Avian Influenza (HPAI) H5 Clade 2.3.4.4b Virus Infection in Birds and Mammals. Anim 14, 1372. https://doi.org/10.3390/ani14091372
HAN, X., BERTZBACH, L.D., and VEIT, M., 2019. Mimicking the passage of avian influenza viruses through the gastrointestinal tract of chickens. Vet. Microbiol 239, 108462. https://doi.org/10.1016/j.vetmic.2019.108462
HARVEY, J.A., MULLINAX, J.M., RUNGE, M.C., and PROSSER, D.J., 2023. The changing dynamics of highly pathogenic avian influenza H5N1: Next steps for management & science in North America, Biol. Conserv 282, 110041. https://doi.org/10.1016/j.biocon.2023.110041
HATTA, M., GAO, P., HALFMANN, P., and KAWAOKA, Y., 2001. Molecular Basis for High Virulence of Hong Kong H5N1 Influenza A Viruses. Sci 293 :1840–1842. https://doi.org/10.1126/science.1062882
HIROSE, R., DAIDOJI, T., NAITO, Y., WATANABE, Y., ARAI, Y., ODA, T., KONISHI, H., YAMAWAKI, M., ITOH, Y., and NAKAYA, T., 2016. Long-term detection of seasonal influenza RNA in faeces and intestine. Clin. Microbiol. Infect 22, 813.e811-813.e817. https://doi.org/10.1016/j.cmi.2016.06.015
IBRAHIM, M., SULTAN, H.A., ABDEL RAZIK, A.G., KANG, K., ARAFA, A.S., SHEHATA, A.A., SAIF, Y.M., and LEE, C-W., 2015. Development of broadly reactive H5N1 vaccine against different Egyptian H5N1 viruses. Vaccine 33 (23), 2670-2677. https://doi.org/10.1016/j.vaccine.2015.04.023
ISLAM, A., MUNRO, S., HASSAN, M.M., EPSTEIN, J.H., and KLAASSEN, M., 2023. The role of vaccination and environmental factors on outbreaks of high pathogenicity avian influenza H5N1 in Bangladesh. One Health 17, 100655. https://doi.org/10.1016/j.onehlt.2023.100655
JIAO, P., TIAN, G., LI, Y., DENG, G., JIANG, Y., LIU, C., LIU, W., BU, Z., KAWAOKA, Y., and CHEN, H., 2008. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol 82 :1146–1154. https://doi.org/10.1128/jvi.01698-07
KEAWCHAROEN, J., VAN RIEL, D., VAN AMERONGEN, G., BESTEBROER, T., BEYER, W.E., VAN LAVIEREN, R., OSTERHAUS, A.D.M.E., FOUCHIER, R.A.M., and KUIKEN, T., 2008. Wild Ducks as Long-Distance Vectors of Highly Pathogenic Avian Infl uenza Virus (H5N1). Emerg. Infect. Dis 14 (4) : 600-607. https://doi.org/10.3201/eid1404.071016
KEELER, S.P., DALTON, M.S., CRESSLER, A.M., BERGHAUS, R.D., and STALLKNECHT, D.E., 2014. Abiotic factors affecting the persistence of avian influenza virus in surface waters of waterfowl habitats. Appl. Environ. Microbiol 80, 2910–2917. https://doi.org/10.1128/AEM.03790-13
KOOPMANS, M.P.G., BARTON, B.C., CUNNINGHAM, A.A., ADISASMITO, W.B., ALMUHAIRI, S., BILIVOGUI, P., BUKACHI, S.A., CASAS, N., CEDIEL, B.N., CHARRON, D.F., et al., 2024. One Health High-Level Expert Panel. The panzootic spread of highly pathogenic avian influenza H5N1 sublineage 2.3.4.4b: a critical appraisal of One Health preparedness and prevention. Lancet Infect Dis 24(12) : e774-e781. https://doi.org/10.1016/S1473-3099(24)00438-9
KOVÁCS, L., FARKAS, M., DOBRA, P.F., LENNON, G., KÖNYVES, L.P., and RUSVAI, M., 2025. Avian Influenza Clade 2.3.4.4b: Global Impact and Summary Analysis of Vaccine Trials. Vaccines 13, 453. https://doi.org/10.3390/vaccines13050453
KRAMMER, F., HERMANN, E.,and RASMUSSEN, A.L.,2025. Highly pathogenic avian influenza H5N1: history, current situation, and outlook. J Virol 99:e02209-24. https://doi.org/10.1128/jvi.02209-24
LEAN, F.Z.X., VITORES, A.G., REID, S.M., BANYARD, A.C., BROWN, I.H., NÚÑEZ, A., and HANSEN, R.D.E., 2022. Gross pathology of high pathogenicity avian influenza virus H5N1 2021-2022 epizootic in naturally infected birds in the United Kingdom. One Health 14 :100392. https://doi.org/10.1016/j.onehlt.2022.100392
LEBARBENCHON, C., FEARE, C.J., RENAUD, F., THOMAS, F., and GAUTHIER-CLERC, M., 2010. Persistence of Highly Pathogenic Avian Influenza Viruses in Natural Ecosystems. Emerg Infect Dis 16(7) :1057-1062. https://doi.org/10.3201/eid1607.090389
LEE, D-H., CRIADO, M.F., and SWAYNE, D.E., 2021. Pathobiological Origins and Evolutionary History of Highly Pathogenic Avian Influenza Viruses. Cold Spring Harb Perspect Med11 : a 038679. https://doi.org/10.1101/cshperspect.a038679
LEE, S-H., KWON, J-H., YOUK, S., LEE, SA-W., LEE, D-H., and SONG, C-S., 2025. Epidemiology and pathobiology of H5Nx highly pathogenic avian influenza in South Korea (2003–2024) : a comprehensive review. Vet Q 45(1), 23–38. https://doi.org/10.1080/01652176.2025.2498918
LIANG, Y., 2024. Pathogenicity and virulence of influenza, Vir 14:1, 2223057. https://doi.org/10.1080/21505594.2023.2223057
LI, Z., CHEN, H.,JIAO, P., DENG, G., TIAN, G., LI, Y., HOFFMANN, E., WEBSTER, R.G., MATSUOKA, Y., and YU, K., 2005. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol 79 :12058–12064. https://doi.org/10.1128/jvi.79.18.12058-12064.2005
MESEKO, C., AMEJI, N.O., KUMAR, B., and CULHANE, M., 2023. Rational approach to vaccination against highly pathogenic avian influenza in Nigeria: a scientific perspective and global best practice. Arch Virol 168, 263. https://doi.org/10.1007/s00705-023-05888-2
MOULICK, A., RICHTERA, L., MILOSAVLJEVIC, V., CERNEI, N., HADDAD, Y., ZITKA, O., KOPEL, P., HEGER, Z., and ADAM, V., 2017. Advanced nanotechnologies in avian influenza: Current status and future trends - A review. Anal Chim Acta 983 :42-53. https://doi.org/10.1016/j.aca.2017.06.045
NATARAJ R, CHANDRA A, and KESAVARDHANA S., 2024. Avian influenza virus neuraminidase stalk length and haemagglutinin glycosylation patterns reveal molecularly directed reassortment promoting the emergence of highly pathogenic clade 2.3.4.4b A (H5N1) viruses. BioRxiv. https://doi.org/10.1101/2024.05.22.595329
NEUMANN, G., CHEN, H., GAO, G.F., SHU, Y., and KAWAOKA, Y., 2010. H5N1 influenza viruses : outbreaks and biological properties. Cell Res 20(1):51-61. https://doi.org/10.1038/cr.2009.124
NIU, Q., JIANG, Z., WANG, L., JI, X., BAELE, G., QIN, Y., LIN, L., LAI, A., CHEN, Y., VEIT, M., and SU, S., 2025. Prevention and control of avian influenza virus: Recent advances in diagnostic technologies and surveillance strategies. Nat Commun 16, 3558. https://doi.org/10.1038/s41467-025-58882-4
NOORUZZAMAN, M., MUMU, T.T., HOSSAIN, I., KABIRAJ, C.K., BEGUM, J.A., RAHMAN, M.M., ALI, M.Z., GIASUDDIN, M., KING, J., DIEL, D.G., et al,. 2024. Continuing evolution of H5N1 highly pathogenic avian influenza viruses of clade 2.3.2.1a G2 genotype in domestic poultry of Bangladesh during 2018–2021. Avian Pathol 54(2), 198–211. https://doi.org/10.1080/03079457.2024.2403427
O'BRIEN, B., GOODRIDGE, L., RONHOLM, J., and NASHERI, N., 2021. Exploring the potential of foodborne transmission of respiratory viruses. Food Microbiol 95:103709. 1-10. https://doi.org/10.1016/j.fm.2020.103709
OTTE, J.,  HINRICHS, J.,  RUSHTON, J.,  ROLAND-HOLST, D., and ZILBERMAN, D., 2008. Impacts of avian influenza virus on animal production in developing countries. CABI Reviews. 3,080 : 1-18. https://doi.org/10.1079/PAVSNNR20083080
PARUMS, D.V. 2025. Editorial : Rapid Testing for the Avian Influenza A(H5N1) Virus is Urgently Required as Infections in Poultry and Dairy Cows are on the Rise, and so is Transmission to Humans. Med Sci Monit 31:e949109.  https://doi.org/10.12659/MSM.949109
PEACOCK, T.P., MONCLA, L., DUDAS, G., VANINSBERGHE, D.,  SUKHOVA, K.,  LLOYD-SMITH, J.O.,  WOROBEY, M., LOWEN, A.C., and NELSON, M.I., 2025. The global H5N1 influenza panzootic in mammals. Nat 637, 304–313. https://doi.org/10.1038/s41586-024-08054-z
PEYRE, M., FUSHENG, G., DESVAUX, S., and ROGER, F., 2009. Avian influenza vaccines: a practical review in relation to their application in the field with a focus on the Asian experience, Epidemiol. Infect. 137 (1) : 1–21, https://doi.org/10.1017/S0950268808001039
PFEIFFER, D.U., OTTE, M.J., ROLAND-HOLST, D., INUI, K., TUNG, N., and ZILBERMAN, D., 2011. Implications of global and regional patterns of highly pathogenic avian influenza virus H5N1 clades for risk management. Vet. J 190, 309–316. https://doi.org/10.1016/j.tvjl.2010.12.022
PHILIPPA, J.D. 2008. Chapter 10 - Avian Influenza, Editor(s): Murray E. Fowler, R. Eric Miller, Zoo and Wild Animal Medicine (Sixth Edition), W.B. Saunders, 2008, Pages 79-cp1. https://doi.org/10.1016/B978-141604047-7.50013-0
PINSKY BA, and BRADLEY B.T., 2024. Opportunities and challenges for the U.S. laboratory response to highly pathogenic avian influenza A(H5N1). J. Clin. Virol 174, 105723. 1-6. https://doi.org/10.1016/j.jcv.2024.105723
RAPHAEL, F.O., OKOH, O.F., OMACHI, A., and ABIOJO, A.D., 2025. Economic Implications of Avian Influenza Vaccination Programs in Poultry Production.  Int. J. Adv. Res. Publ. Rev 2 (4),10-34. https://ijarpr.com/uploads/V2ISSUE4/IJARPR0602.pdf
SAKODA Y, ITO H, UCHIDA Y, OKAMATSU M, YAMAMOTO N, SODA K, NOMURA N, KURIBAYASHI S, SHICHINOHE S, SUNDEN Y, and et al., 2012. Reintroduction of H5N1 highly pathogenic avian influenza virus by migratory water birds, causing poultry outbreaks in the 2010–2011 winter season in Japan. J. Gen. Virol 93, 541–550. https://doi.org/10.1099/vir.0.037572-0
SALAHELDIN AH, KASBOHM E, EL-NAGGAR H, ULRICH R, SCHEIBNER D, GISCHKE M, HASSAN MK, ARAFA A-SA, HASSAN WM, ABD EL-HAMID HS, and et al., 2018. Potential Biological and Climatic Factors That Influence the Incidence and Persistence of Highly Pathogenic H5N1 Avian Influenza Virus in Egypt. Front. Microbiol 9:528. https://doi.org/10.3389/fmicb.2018.00528
SALZBERG SL, KINGSFORD C, CATTOLI G, SPIRO DJ, JANIES DA, ALY MM, BROWN IH, COUACY-HYMANN E, DE MIA GM, DUNG DO H, et al., 2007. Genome analysis linking recent European and African influenza (H5N1) viruses. Emerg Infect Dis.13(5):713-718. https://doi.org/10.3201/eid1305.070013
SANCHEZ-ROJAS IC, BONILLA-ALDANA DK, SOLARTE-JIMENEZ CL, BONILLA-ALDANA JL, ACOSTA ESPAÑA JD, and RODRIGUEZ-MORALES A.J., 2025. Highly Pathogenic Avian Influenza (H5N1) Clade 2.3.4.4b in Cattle : A Rising One Health Concern. Animals 15, 1963. https://doi.org/ 10.3390/ani15131963
SANGSIRIWUT K, UIPRASERTKUL M, PAYUNGPORN S, AUEWARAKUL P, UNGCHUSAK K, CHANTRATITA W, and UTHAVATHANA P., 2018. Complete Genomic Sequences of Highly Pathogenic H5N1 Avian Influenza Viruses Obtained Directly from Human Autopsy Specimens. Microbiol Resour Announc 7:10.1128/mra.01498-18. https://doi.org/10.1128/mra.01498-18
SCHOCH, C.L., CIUFO, S., DOMRACHEV, M., HOTTON, C.L., KANNAN, S., KHOVANSKAYA, R., LEIPE, D., MCVEIGH, R., O'NEILL, K., ROBBERTSE, B., et al,. 2020. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database 2020. Vol. 2020 : Article ID baaa062. 1-21. https://doi.org/10.1093/database/baaa062
SONNBERG, S., WEBBY, R.J., and WEBSTER, R.G., 2013. Natural history of highly pathogenic avian influenza H5N1. Virus Res 178(1) : 63-77. https://doi.org/10.1016/j.virusres.2013.05.009
SPICKLER, A.R., TRAMPEL, D.W., and ROTH, J.A., 2008. The onset of virus shedding and clinical signs in chickens infected with high-pathogenicity and low-pathogenicity avian influenza viruses. Avian Pathol 37(6) : 555–577. https://doi.org/10.1080/03079450802499118
SUAREZ, D.L., 2010. Avian influenza : our current understanding. Anim. Health Res. Rev 11 (1) :19 – 33. https://doi.org/10.1017/S1466252310000095
SUBEDI, D., FARHAN, M.H.R., NIRAULA, A., SHRESTHA, P., CHANDRAN, D., ACHARYA, K.P., and AHMAD, M., 2024. Avian influenza in low and middle-income countries (LMICs): outbreaks, vaccination challenges, and economic impact. Pak Vet J, 44(1): 9-17. http://dx.doi.org/10.29261/pakvetj/2024.139
SWAYNE, D.E., SPACKMAN, E., and PANTIN-JACKWOOD, M., 2014. Success factors for avian influenza vaccine use in poultry and potential impact at the wild bird–agricultural interface, EcoHealth 11, 94–108. https://doi.org/10.1007/s10393-013- 0861-3
TADA, T., SUZUKI, K., SAKURAI, Y., KUBO, M., OKADA, H., ITOH, T., and TSUKAMOTO, K., 2011. NP Body Domain and PB2 Contribute to Increased Virulence of H5N1 Highly Pathogenic Avian Influenza Viruses in Chickens . J Virol 85. https://doi.org/10.1128/jvi.01648-10
TAMMIRANTA, N., ISOMURSU, M., FUSARO, A., NYLUND, M., NOKIREKI, T., GIUSSANI, E., ZECCHIN, B., TERREGINO, C., and GADD, T., 2023. Highly pathogenic avian influenza A (H5N1) virus infections in wild carnivores connected to mass mortalities of pheasants in Finland. Infect. Genet. Evol 111, 105423. https://doi.org/10.1016/j.meegid.2023.105423
TIAN, H., and XU, B., 2015. Persistence and transmission of avian influenza A (H5N1) : virus movement, risk factors and pandemic potential. Ann of GIS 21(1) : 55–68. https://doi.org/10.1080/19475683.2014.992368
TSENG, I., PAN, B.Y., FENG, Y.C., and FANG, C.T., 2024. Re-evaluating efficacy of vaccines against highly pathogenic avian influenza virus in poultry: A systematic review and meta-analysis. One Health 18:100714. doi: https://doi.org/10.1016/j.onehlt.2024.100714
UKOAKA, B.M., OKESANYA, O.J., DANIEL, F.M., AHMED, M.M., UDAM, N.G., WAGWULA, P.M., ADIGUN, O.A., UDOH, R.A., PETER, I.G., and LAWAL, H., 2024. Updated WHO list of emerging pathogens for a potential future pandemic: Implications for public health and global preparedness. Infez. Med 4, 463-477. https://doi.org/10.53854/liim-3204-5
VAN DEN BRAND, J.M., KRONE, O., WOLF, P.U., VAN DE BILDT, M.W., VAN AMERONGEN, G., OSTERHAUS, A.D., and KUIKEN, T., 2015. Host-specific exposure and fatal neurologic disease in wild raptors from highly pathogenic avian influenza virus H5N1 during the 2006 outbreak in Germany. Vet Res. 5; 46:24. https://doi.org/10.1186/s13567-015-0148-5
WALKER, P.J., SIDDELL, S.G., LEFKOWITZ, E.J., MUSHEGIAN, A.R., ADRIAENSSENS, E,M., ALFENAS-ZERBINI, P., DEMPSEY, D.M., DUTILH, B.E., GARCÍA, M.L., CURTIS HENDRICKSON, R., et al., 2022. Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses. Arch Virol 167(11) : 2429-2440. https://doi.org/10.1007/s00705-022-05516-5
WATANABE, Y., IBRAHIM, M., ELLAKANY, H.F., KAWASHITA, N., DAIDOJI, T., TAKAGI, T., YASUNAGA, T., NAKAYA, T., and IKUTA, K., 2012. Antigenic analysis of highly pathogenic avian influenza virus H5N1 sublineages co-circulating in Egypt. J. Gen. Virol 93 (10) : 2215–2226. https://doi.org/10.1099/vir.0.044032-0
WEBBY, R.J., and UYEKI, T.M., 2024. An Update on Highly Pathogenic Avian Influenza A(H5N1) Virus, Clade 2.3.4.4b.
J Infect Dis 230 (3) : 533–542. https://doi.org/10.1093/infdis/jiae379
WEI, K.,  LIN, Y.,  LI, Y.,  and CHEN, Y., 2014. Tracking the Evolution in Phylogeny, Structure and Function of H5N1 Influenza Virus PA Gene. Transbound Emerg Dis. https://doi.org/10.1111/tbed.12301
WOAH., 2025. World Animal Health Information System, (WAHIS, février 2025)
WOAH., 2024. High Pathogenicity Avian Influenza (HPAI) in Cattle.
WOAH., 2023. Note d’orientation, Vaccination contre l’influenza aviaire : pourquoi cela n’est pas un obstacle à la sécurité des échanges commerciaux.
WOOD, J.P.,  CHOI, Y.W.,  CHAPPIE, D.J., ROGERS, J.V.,  and KAYE, J.Z., 2010. Environmental Persistence of a Highly Pathogenic Avian Influenza (H5N1) Virus. Environ. Sci. Technol 44(19) : 7515–7520. https://pubs.acs.org/doi/10.1021/es1016153
XING, X., SHI, J., CUI, P., YAN, C., ZHANG, Y.,  ZHANG, Y.,  WANG, C., CHEN, Y.,  ZENG, X.,  TIAN, G.,  LIU, L.,  GUAN, Y.,  LI, C.,  SUZUKI, Y.,  DENG, G., and  CHEN, H., 2024. Evolution and biological characterization of H5N1 influenza viruses bearing the clade 2.3.2.1 hemagglutinin gene. Emerg Microbes Infect 13(1). https://doi.org/10.1080/22221751.2023.2284294
YASSINE, H.M., LEE, C-W., GOURAPURA, R., and SAIF, Y.M., 2010. Interspecies and intraspecies transmission of influenza A viruses: viral, host and environmental factors. Anim. Health Res. Rev 11 (1) : 53-72. https://doi.org/10.1017/S1466252310000137
ZHANG, Z., and LEI, Z., 2024. The Alarming Situation of Highly Pathogenic Avian Influenza Viruses in 2019–2023. Glob Med Genet 11:200–213. https://doi.org/10.1055/s-0044-1788039
ZULLI, A., ZHANG, M., JONG, S., BLISH, C., and BOEHM, A.B., 2025. Infectivity and Persistence of Influenza A Virus in Raw Milk. Environ. Sci. Technol. Lett 12 (1) : 31−36. https://doi.org/10.1021/acs.estlett.4c00971