Estrus Synchronization in Ugandan Cattle Herds

Document Type : Original Article

Authors

1 Department of Veterinary Pharmacy, Clinical and Comparative Medicine, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda

2 Department of Breeding and Reproduction, National Animal Genetic Resources Centre and Data Bank (NAGRC&DB), P.O. Box 183, Entebbe, Uganda

3 National Fisheries Resources Research Institute, National Agricultural Research Organisation (NARO), P.O. Box 343, Jinja, Uganda

4 Lanoa Agricultural and Technology Consult Limited, P.O. Box 1805, Mbarara City, Uganda

5 Department of Animal Production and Range Management, Faculty of Agriculture and Environment, Gulu University, P. O. Box 166, Gulu, Uganda

Abstract

This survey aimed to assess the breeding practices and pregnancy rates of cattle on farms that utilized artificial insemination (AI) after estrus synchronization in Uganda. Management and breeding data were collected from 297 farms using a semi-structured questionnaire and supported by breeding record reviews and AI technician interviews. Kruskal-Wallis tests were used to determine associations between breeding practices and pregnancy rates using the R software. Breed categories on the farms were exotic dairy and their crosses (64.7%), exotic beef and their crosses (15.1%), and indigenous breeds of Ankole longhorn and shorthorn Zebu (20.2%). Main breeding methods on the farms were natural mating (53.3%), AI after natural estrus (34.7%), and AI after estrus synchronization (11.9%). Estrus synchronization protocols used on the farms were Ovsynch (42.4%), 7-day Co-synch + progesterone-releasing intravaginal device (P4ID) (32.3%), Prostaglandin F2α (PG) single injection (23.4%), and 7-day Co-synch (2.4%). Mean pregnancy rates to AI after synchronization were not significantly different (P>0.05) among protocols and were 33.00%, 42.65%, 36.87%, and 41.33% for 7-day Co-synch, 7-day Co-synch+P4ID, Ovsynch, and PG single injection protocols, respectively. Mean pregnancy rates were 29.9%, 40.4%, and 42.7% for indigenous breeds, exotic beef/crosses, and exotic dairy/crosses, respectively, and significantly lower in indigenous breeds than exotic dairy/crosses (P.adj<0.001) and exotic beef breeds/crosses (P.adj=0.004). Pregnancy rates were also significantly lower on farms where the main breeding method was natural mating than AI on natural heat (P.adj=0.03) and AI after synchronization (P.adj=0.02). Ovsynch, 7-day Co-synch+P4ID, PG single injection and 7-day Co-synch were the estrus synchronization protocols used in Uganda. Estrus synchronization was more common in dairy exotic cattle than in beef exotic or indigenous cattle. Pregnancy rates with synchronized AI were lower in B. indicus than B. taurus herds.  Improvements in management and design of controlled reproductive studies are required to enhance the success of reproductive technologies in B. indicus cattle.

Keywords

Main Subjects


ARNDT, W. J., HOLLE, A. J., BAUER, M. L., KIRSCH, J. D., SCHIMEK, D. E., ODDE, K. G., and VONNAHME, K. A., 2009. Effect of post-insemination progesterone supplementation on pregnancy rate in dairy cows. Canadian Journal of Veterinary Research 73: 271–274. https://pmc.ncbi.nlm.nih.gov/articles/PMC2757707/
AYRES, H., FERREIRA, R. M., DE SOUZA TORRES-JÚNIOR, J. R., DEMÉTRIO, C. G. B., DE LIMA, C. G., and BARUSELLI, P. S., 2009. Validation of body condition score as a predictor of subcutaneous fat in Nelore (Bos indicus) cows. Livestock Science 123: 175–179. https://doi.org/10.1016/j.livsci.2008.11.004
AYRES, H., FERREIRA, R. M., TORRES-JÚNIOR, J. R. S., DEMÉTRIO, C. G. B., SÁ FILHO, M. F., GIMENES, L. U., PENTEADO, L., D’OCCHIO, M. J., and BARUSELLI, P. S., 2014. Inferences of body energy reserves on conception rate of suckled Zebu beef cows subjected to timed artificial insemination followed by natural mating. Theriogenology 82: 529–536. https://doi.org/10.1016/j.theriogenology.2014.04.026
BELAY, D. L., TERA, A., TEGENG, A., and AGRICULTURAL, H., 2016. Evaluating the Efficiency of Artificial Insemination Following Estrus Synchronization of Dairy Cattle in Southern Region , Ethiopia : The Case of Dale District. Journal of Natural Sciences 6: 22–27. https://core.ac.uk/download/pdf/234656285.pdf. Accessed 19 June 2025
BELLO, N. M., STEIBEL, J. P., and PURSLEY, J. R., 2006. Optimizing ovulation to first GnRH improved outcomes to each hormonal injection of Ovsynch in lactating dairy cows. Journal of Dairy Science 89: 3413–3424. https://doi.org/10.3168/jds.S0022-0302(06)72378-5
BIGIRWA, G., ACAI, J. O., BOGERE, P., IM, S. K., KIM, H., LEE, H., and SONG, K., 2019. Suboptimum reproductive performance among dairy herds in Uganda. International Journal of Livestock Production 10: 94–100. https://doi.org/10.5897/IJLP2018.0520
BÓ, G. A., and BARUSELLI, P. S., 2014. Synchronization of ovulation and fixed-time artificial insemination in beef cattle. Animal 8: 144–150. https://doi.org/10.1017/S1751731114000822
BÓ, G. A., BARUSELLI, P. S., and MAPLETOFT, R. J., 2018. Synchronization techniques to increase the utilization of artificial insemination in beef and dairy cattle. Animal Reproduction (AR), 10: 137–142. https://animalreproduction.org/journal/animreprod/article/5b5a6048f7783717068b468a.
BÓ, G. A., BARUSELLI, P. S., and MARTÍNEZ, M. F., 2003. Pattern and manipulation of follicular development in Bos indicus cattle. Animal Reproduction Science 78: 307–326. https://doi.org/10.1016/S0378-4320(03)00097-6
BO, G.A., CUTAIS, L., PERES, L.C., PINCINATO, D., MARAÑA, D. AND BARUSELLI, P.S., 2019. Technologies for fixed-time artificial insemination and their influence on reproductive performance of Bos indicus cattle. Bioscientifica Proceedings 6: 223-236. http://dx.doi.org/10.1530/biosciprocs.6.014
BÓ, G. A., DE LA MATA, J. J., BARUSELLI, P. S., and MENCHACA, A., 2016. Alternative programs for synchronizing and resynchronizing ovulation in beef cattle. Theriogenology 86: 388–396. https://doi.org/10.1016/j.theriogenology.2016.04.053
BONACKER, R. C., GRAY, K. R., BREINER, C. A., ANDERSON, J. M., PATTERSON, D. J., SPINKA, C. M., and THOMAS, J. M., 2020. Comparison of the 7 and 7 Synch protocol and the 7-day CO-Synch + CIDR protocol among recipient beef cows in an embryo transfer program. Theriogenology 158: 490–496. https://doi.org/10.1016/j.theriogenology.2020.09.033
BONDURANT, R. H. 2005. Venereal diseases of cattle: natural history, diagnosis, and the role of vaccines in their control. Veterinary Clinics: Food Animal Practice 21: 383–408. https://doi.org/10.1016/j.cvfa.2005.03.002
BRIDGES, G. A., HELSER, L. A., GRUM, D. E., MUSSARD, M. L., GASSER, C. L., and DAY, M. L., 2008. Decreasing the interval between GnRH and PGF2α from 7 to 5 days and lengthening proestrus increases timed-AI pregnancy rates in beef cows. Theriogenology 69: 843–851. https://doi.org/10.1016/j.theriogenology.2007.12.011
BRIDGES, G. A., MUSSARD, M. L., HELSER, L. A., and DAY, M. L., 2014. Comparison of follicular dynamics and hormone concentrations between the 7-day and 5-day CO-Synch+ CIDR program in primiparous beef cows. Theriogenology 81: 632–638. https://doi.org/10.1016/j.theriogenology.2013.11.020
COLAZO, M. G., BEHROUZI, A., AMBROSE, D. J., and MAPLETOFT, R. J., 2015. Diameter of the ovulatory follicle at timed artificial insemination as a predictor of pregnancy status in lactating dairy cows subjected to GnRH-based protocols. Theriogenology 84: 377–383. https://doi.org/10.1016/j.theriogenology.2015.03.034
DISKIN, M. G., and KENNY, D. A., 2014. Optimising reproductive performance of beef cows and replacement heifers. Animal 8: 27–39. https://doi.org/10.1017/S175173111400086X
DURO, E.S. 2022. Cattle breeding practice of the community and evaluation of artificial insemination (AI) after estrus synchronization in Wondo Genet district, Sidama national regional state, southern Ethiopia. International Journal of Livestock Research 12: 1-15. https://ijlr.org/ojs_journal/index.php/ijlr/article/view/114
EKLUNDH, C. 2013. The use of artificial insemination in dairy farms in urban/peri-urban Kampala, Uganda – a study of knowledge, attitude and practices. Masters Dissertation, Swedish University of Agricultural Sciences, Uppsala, Sweden, 1–49 pp. https://stud.epsilon.slu.se/5326/7/eklund_c_130227.pdf. Accessed 19 June 2025
ENDRIS, M. 2017. A review on milk production and reproductive performance of dairy cattle in Ethiopia. Online Journal of Animal and Feed Research 7: 154–160.https://www.ojafr.ir/main/attachments/article/131/OJAFR%207(6)%20154-160,%202017.pdf.
FORDYCE, G., ENTWISTLE, K., NORMAN, S., PERRY, V., GARDINER, B., and FORDYCE, P., 2006. Standardising bull breeding soundness evaluations and reporting in Australia. Theriogenology 66: 1140–1148. https://doi.org/10.1016/j.theriogenology.2006.03.009
GALUKANDE, E., MULINDWA, H., WURZINGER, M., ROSCHINSKY, R., MWAI, A. O., and SÖLKNER, J., 2013. Cross-breeding cattle for milk production in the tropics: achievements, challenges and opportunities. Animal Genetic Resources/Resources Génétiques Animales/Recursos Genéticos Animales 52: 111–125. https://doi.org/10.1017/S2078633612000471
GEBREMICHAEL, D. 2015. Breeding practice and estrus synchronization evaluation of dairy cattle in central Zone of Tigray, northern Ethiopia. Ph.D. Thesis, Agriculture (Animal Breeding and Genetics), Jimma University, Jimma, Ethiopia. https://hdl.handle.net/10568/76171.
GERBING, D.W., GERBING, M.D., KERNSMOOTH, S., 2025. Package ‘lessR.’ https://cran.r-project.org/web/packages/lessR/lessR.pdf. 
GETABALEW, M., ALEMNEH, T., and AKEBEREGN, D., 2019. Heritability and its use in animal breeding. International Journal of Veterinary Science and Technology 4: 001–005. https://www.researchgate.net/ publication/333163323_Heritability_and_its_Use_in_Animal_Breeding.
HOLLAND, S. C., WHITTIER, D. W., CLARK, S. G., CURRIN, J. F., SCHRAMM, H. H., and KASIMANICKAM, R. K., 2012. Comparison of 5-day versus 7-day CIDR CO-Synch protocol in crossbred commercial beef cows. In: American Association of Bovine Practitioners Conference Proceedings, Montreal, Canada, pp 191-191. https://doi.org/10.21423/aabppro20123906
ISLAM, R. 2011. Synchronization of estrus in cattle: a review. Vet World 4:136-141. https://www.veterinaryworld.org/Vol.4/March%20-%202011/Synchronization%20of%20Estrus%20in%20Cattle.pdf.
KAZIBONI, S., KUSINA, N.T., SIBANDA, S., MAKUZA, S., NYONI, O., and BHEBHE, E., 2004. Performance of artificial insemination in smallholder dairies of Nharira-Lancashire in Zimbabwe. Livestock Research for Rural Development 16 .http://www.lrrd.org/lrrd16/4/kazi16025.htm
KESLER, D. J., and CONSTANTARAS, M., 2004. Estrus synchronization systems: GnRH. In Proceedings: Applied Reproductive Strategies in Beef Cattle, North Platte, Nebraska, United States, pp. 41–52. https://www.researchgate.net/publication/233986853_Estrus_synchronization_systems_GnRH.
KWON, D.J., IM, S.K., KIM, H., LEE, H.K., and SONG, K.D., 2017. Estrus synchronization and pregnancy rate using ovsynch method in Uganda dairy farms. Journal of Embryo Transfer 32: 159-163. https://doi.org/10.12750/JET.2017.32.3.159
LAMB, G.C., and MERCADANTE, V.R., 2016. Synchronization and artificial insemination strategies in beef cattle. Veterinary Clinics: Food Animal Practice 32: 335-347. https://doi.org/10.1016/j.cvfa.2016.01.006
LAMB, G. C., MERCADANTE, V. R. G., HENRY, D. D., FONTES, P. L. P., DAHLEN, C. R., LARSON, J. E., and DILORENZO, N., 2016. Invited Review: Advantages of current and future reproductive technologies for beef cattle production. The Professional Animal Scientist 32: 162–171. https://doi.org/10.15232/pas.2015-01455
LANDAETA-HERNÁNDEZ, A.J., YELICH, J.V., LEMASTER, J.W., FIELDS, M.J., TRAN, T., CHASE JR, C.C., RAE, D.O., and CHENOWETH, P.J., 2002. Environmental, genetic and social factors affecting the expression of estrus in beef cows. Theriogenology 57: 1357-1370. https://doi.org/10.1016/S0093-691X(02)00635-0
LATIF, M.A., AHMED, J.U., BHUIYAN, M.M.U. and SHAMSUDDIN, M., 2009. Relationship between scrotal circumference and semen parameters in crossbred bulls. Bangladesh Veterinarian 26: 61-67. https://doi.org/10.3329/bvet.v26i2.4952
LEIL, A. Z., A EL-SHAMY, A., and DA, E.-B., 2020. Clinical application of intrauterine laparoscopic insemination in Zaraiby goats using different concentrations of Zaraiby and Boer bucks’ frozen semen. Journal of Applied Veterinary Sciences 5: 61–67. https://dx.doi.org/10.21608/javs.2020.118167
LUCY, M. C., BILLINGS, H. J., BUTLER, W. R., EHNIS, L. R., FIELDS, M. J., KESLER, D. J., KINDER, J. E., MATTOS, R. C., SHORT, R. E., and THATCHER, W. W., 2001. Efficacy of an intravaginal progesterone insert and an injection of PGF2α for synchronizing estrus and shortening the interval to pregnancy in postpartum beef cows, peripubertal beef heifers, and dairy heifers. Journal of Animal Science 79: 982–995. https://doi.org/10.2527/2001.794982x
MASHO, W., FOATO, A., and BEGNA, R., 2024. Breeding practices and evaluation of hormonal estrus synchronization and mass artificial insemination of dairy cattle in southwest Ethiopia. Journal of Agriculture and Food Research 16: 101167. https://doi.org/10.1016/j.jafr.2024.101167
MBURU, J., OJANGO, J.M., KARIUKI, K., and BALTENWECK, I., 2011. Constraints to the use of artificial insemination service and possible solutions. East Africa Dairy Development Project Baseline Survey Brief 2. ILRI, Nairobi, Kenya. https://cgspace.cgiar.org/bitstreams/61abdeaa-e9d1-4f1d-bc05-e1c57ed95b04/download.
 MEKONNEN, T., TADESSE, Y., and MESERET, S., 2020. Genetic improvement strategy of indigenous cattle breeds: Effect of cattle crossbreeding program in production performances. Journal of Applied Life Sciences International 23: 23–40. https://DOI: 10.9734/JALSI/2020/v23i130140
MIAH, A. G., SALMA, U., and HOSSAIN, M. M., 2004. Factors influencing conception rate of local and crossbred cows in Bangladesh. International Journal of Agriculture and Biology 6: 797–801. https://api.fspublishers.org/viewPaper/28940_..pdf.
MONTEIRO JR, P.L.J., BORSATO, M., SILVA, F.L.M., PRATA, A.B., WILTBANK, M.C. AND SARTORI, R., 2015. Increasing estradiol benzoate, pretreatment with gonadotropin-releasing hormone, and impediments for successful estradiol-based fixed-time artificial insemination protocols in dairy cattle. Journal of Dairy Science 98: 3826-3839. https://doi.org/10.3168/jds.2014-9040
MUGISHA, A., KAYIIZI, V., OWINY, D. AND MBURU, J., 2014. Breeding services and the factors influencing their use on smallholder dairy farms in central Uganda. Veterinary Medicine International 2014: 169380. https://doi.org/10.1155/2014/169380
NAING, N. N. 2003. Determination of sample size. Malaysian Journal of Medical Sciences 10: 84–86. https://pmc.ncbi.nlm.nih.gov/articles/PMC3561892/pdf/mjms-10-2-084.pdf.
NISHIMURA, T. K., MARTINS, T., DA SILVA, M. I., LAFUENTE, B. S., DE GARLA MAIO, J. R., BINELLI, M., PUGLIESI, G., and SARAN NETTO, A., 2018. Importance of body condition score and ovarian activity on determining the fertility in beef cows supplemented with long-acting progesterone after timed-AI. Animal Reproduction Science 198: 27–36. https://doi.org/10.1016/j.anireprosci.2018.08.042
OTHMAN, M. A., ELSHALOFY, A. S., ABOU-AHMED, M. M., and GHALLAB, A. R., 2023. The fertility outcomes of egyptian buffalo cows after ovsynch and presynch-ovsynch protocols. Journal of Applied Veterinary Sciences 8: 28–36. https://dx.doi.org/10.21608/javs.2023.218656.1246
PARR, M. H., CROWE, M. A., LONERGAN, P., EVANS, A. C. O., RIZOS, D., and DISKIN, M. G., 2014. Effect of exogenous progesterone supplementation in the early luteal phase post-insemination on pregnancy per artificial insemination in Holstein–Friesian cows. Animal Reproduction Science 150: 7–14. https://doi.org/10.1016/j.anireprosci.2014.08.008
PATIL, I. 2021. Visualizations with statistical details: The’ggstatsplot’approach. Journal of Open Source Software 6: 3167. https://joss.theoj.org/papers/10.21105/joss.03167.
PINHEIRO, O. L., BARROS, C. M., FIGUEIREDO, R. A., DO VALLE, E. R., ENCARNAÇÃO, R. O., and PADOVANI, C. R., 1998. Estrous behavior and the estrus-to-ovulation interval in nelore cattle (Bos indicus with natural estrus or estrus induced with prostaglandin F2α or norgestomet and estradiol valerate. Theriogenology 49: 667–681. https://doi.org/10.1016/S0093-691X(98)00017-X
ROBINSON, J. J., ASHWORTH, C. J., ROOKE, J. A., MITCHELL, L. M., and MCEVOY, T. G., 2006. Nutrition and fertility in ruminant livestock. Animal Feed Science and Technology 126: 259–276. https://doi.org/10.1016/j.anifeedsci.2005.08.006
RODRIGUEZ-MARTINEZ, H. 2012. Assisted reproductive techniques for cattle breeding in developing countries: a critical appraisal of their value and limitations. Reproduction in Domestic Animals 47: 21–26. https://doi.org/10.1111/j.1439-0531.2011.01961.x
SALDARRIAGA, J. P., COOPER, D. A., CARTMILL, J. A., ZULUAGA, J. F., STANKO, R. L., and WILLIAMS, G. L., 2007. Ovarian, hormonal, and reproductive events associated with synchronization of ovulation and timed appointment breeding of Bos indicus-influenced cattle using intravaginal progesterone, gonadotropin-releasing hormone, and prostaglandin F2α. Journal of Animal Science 85: 151–162. https://doi.org/10.2527/jas.2006-335
SARKAR, D. 2021. Package ‘lattice.’ Version 0.20, 45. http://lattice.r-forge.r-project.org/.
SEID, A., ALIY, M., IBRAHIM, N. AND AMANUEL, M., 2017. Perception of Dairy Cattle Owners on Oestrus Synchronization and Mass Artificial Insemination Services in Jimma Zone, South Western Ethiopia. Greener Journal of Agricultural Sciences 7: 137–144. https://doi.org/10.15580/GJAS.2017.6.072117090
SIDDIQUI, M.A.R., BHATTACHARJEE, J., DAS, Z.C., ISLAM, M.M., ISLAM, M.A., HAQUE, M.A., PARRISH, J.J. AND SHAMSUDDIN, M., 2008. Crossbred bull selection for bigger scrotum and shorter age at puberty with potentials for better quality semen. Reproduction in Domestic Animals 43: 74-79. https://doi.org/10.1111/j.1439-0531.2007.00857.x
SOUZA, A. H., AYRES, H., FERREIRA, R. M., and WILTBANK, M. C., 2008. A new presynchronization system (Double-Ovsynch) increases fertility at first postpartum timed AI in lactating dairy cows. Theriogenology 70: 208–215. https://doi.org/10.1016/j.theriogenology.2008.03.014
TEAM, R. D. C. 2010. R: A language and environment for statistical computing. https://research.cbs.dk/en/publications/r-development-core-team-2010-r-a-language-and-environment-for-sta.
THE FOOD AND AGRICULTURE ORGANIZATION, 2019. The future of livestock in Uganda: Opportunities and challenges in the face of uncertainty. https://www.preventionweb.net/publication/future-livestock-uganda-opportunities-and-challenges-face-uncertainty.
VALERGAKIS, G. E., ARSENOS, G., and BANOS, G., 2007. Comparison of artificial insemination and natural service cost effectiveness in dairy cattle. Animal 1: 293–300. https://doi.org/10.1017/S1751731107340044
WILLIAMS, G.L. AND STANKO, R.L., 2020. Pregnancy rates to fixed-time AI in Bos indicus-influenced beef cows using PGF2α with (Bee Synch I) or without (Bee Synch II) GnRH at the onset of the 5-day CO-Synch+ CIDR protocol. Theriogenology 142: 229-235. https://doi.org/10.1016/j.theriogenology.2019.09.047
WOLDU, T., GIORGIS, Y.T. AND HAILE, A., 2011. Factors affecting conception rate in artificially inseminated cattle under farmers’ condition in Ethiopia. Journal of Cell and Animal Biology 5: 334-338. http://dx.doi.org/10.5897/JCAB11.067
YAN, L., ROBINSON, R., SHI, Z. AND MANN, G., 2016. Efficacy of progesterone supplementation during early pregnancy in cows: A meta-analysis. Theriogenology 85: 1390-1398. https://doi.org/10.1016/j.theriogenology.2015.12.027
ZULUAGA, J.F., SALDARRIAGA, J.P., COOPER, D.A., CARTMILL, J.A. AND WILLIAMS, G.L., 2010. Presynchronization with gonadotropin-releasing hormone increases the proportion of Bos indicus-influenced females ovulating at initiation of synchronization but fails to improve synchronized new follicular wave emergence or fixed-time artificial insemination conception rates using intravaginal progesterone, gonadotropin-releasing hormone, and prostaglandin F2α. Journal of animal science 88: 1663-1671. https://doi.org/10.2527/jas.2009-2480