El-Katcha, M., Soltan, M., Farfour, H., El-Shobokshy, S. (2025). Effect of Different Dietary Buffer Sources and Roughage-to-Concentrate Ratios on Growth Performance, Rumen Fermentation, and Health Status of Growing Lambs. Journal of Applied Veterinary Sciences, 10(3), 151-164. doi: 10.21608/javs.2025.390875.1633
Mohamed Ismail El-Katcha; Mosaad Abdel Khalek Soltan; Haitham Tawfik Farfour; Set Abdel Salam El-Shobokshy. "Effect of Different Dietary Buffer Sources and Roughage-to-Concentrate Ratios on Growth Performance, Rumen Fermentation, and Health Status of Growing Lambs". Journal of Applied Veterinary Sciences, 10, 3, 2025, 151-164. doi: 10.21608/javs.2025.390875.1633
El-Katcha, M., Soltan, M., Farfour, H., El-Shobokshy, S. (2025). 'Effect of Different Dietary Buffer Sources and Roughage-to-Concentrate Ratios on Growth Performance, Rumen Fermentation, and Health Status of Growing Lambs', Journal of Applied Veterinary Sciences, 10(3), pp. 151-164. doi: 10.21608/javs.2025.390875.1633
El-Katcha, M., Soltan, M., Farfour, H., El-Shobokshy, S. Effect of Different Dietary Buffer Sources and Roughage-to-Concentrate Ratios on Growth Performance, Rumen Fermentation, and Health Status of Growing Lambs. Journal of Applied Veterinary Sciences, 2025; 10(3): 151-164. doi: 10.21608/javs.2025.390875.1633
Effect of Different Dietary Buffer Sources and Roughage-to-Concentrate Ratios on Growth Performance, Rumen Fermentation, and Health Status of Growing Lambs
1Nutrition and Veterinary Clinical Nutrition Department, Faculty of Veterinary Medicine, Alexandria University, Egypt
2Veterinarian at General Authority of Veterinary Medicine, Kafr El-Dawar, Egypt
3Department of Nutrition and Veterinary Clinical Nutrition Faculty of Veterinary Medicine Alexandria University, Egypt
Receive Date: 31 May 2025,
Revise Date: 22 June 2025,
Accept Date: 28 June 2025
Abstract
A total of 90 Barki lambs (average body weight: 24.43 kg) were randomly and equally allotted into nine groups to assess the role of dietary buffer addition on growth performance, rumen fermentation, and overall health status. The lambs were fed diets with different roughage-to-concentrate (R:C) ratios: 60:40, 40:60, and 20:80. Within each R:C ratio, three dietary treatments were applied: no buffer (control), sodium bicarbonate, and sodium bentonite supplementation. Groups 1, 2, and 3 were fed the 60R:40C diet with no buffer, sodium bicarbonate, and sodium bentonite, respectively. Groups 4, 5, and 6 received the 40R:60C diet with the same buffer treatments, and Groups 7, 8, and 9 were fed the 20R:80C diet under the same supplementation conditions. Results showed that, within the 60R:40C group, both buffers improved (P≥0.05) body weight (BW), total gain (TG), total feed intake (TFI), and feed conversion ratio (FCR), while significantly (P<0.05) increasing rumen total volatile fatty acids (TVFAs), intestinal villi length, phagocytic activity, and serum bactericidal activity. These treatments also significantly reduced serum lysozyme activity and rumen ammonia nitrogen (NH3-N) levels. In the absence of buffer supplementation, the 40R:60C diet resulted in improved BW, TG, intestinal villi length, and reduced TFI, leading to improved FCR. It also enhanced phagocytic and bactericidal activities and lowered lysozyme levels. This ratio did not significantly affect rumen pH. However, the 20R:80C diet significantly reduced rumen pH. Supplementation of buffers in the 20R:80C group improved BW, TG, villi length, TVFAs, and concentrations of acetic and propionic acids. It also reduced rumen NH₃-N and mitigated the negative impacts of high concentrate feeding on rumen pH while lowering TFI and improving FCR. Overall, the 40R:60C ratio supplemented with sodium bicarbonate yielded the most favorable outcomes in terms of growth performance and rumen health. Therefore, we recommend this combination for optimal productivity in growing lambs.
AIKMAN, P. C., HENNING, P. H., HUMPHRIES, D. J., and HORN, C. H., 2011. Rumen pH and fermentation characteristics in dairy cows supplemented with Megasphaera elsdenii NCIMB 41125 in early lactation. Journal of dairy science, 94: 2840-2849. https://doi.org/10.3168/jds.2010-3783
AITCHISON, E. M., ROWE, J. B., and RIX, G. S., 1986. Effect of bentonite clays on rumen fermentation and diet digestibility. Proceedings of the Nutrition Society of Australia 11: 111-114. https://www.cabidigitallibrary.org/doi/full/10.5555/19871496576
ALHIDARY, I. A., ABDELRAHMAN, M. M., and ELSABAGH, M., 2019. A comparative study of four rumen buffering agents on productive performance, rumen fermentation and meat quality in growing lambs fed a total mixed ration. animal, 13: 2252-2259. https://doi.org/10.1017/S1751731119000296
ALHIDARY, I. A., ABDELRAHMAN, M. M., ALJUMAAH, R. S., ALYEMNI, A. H., AYADI, M. A., and AL-SAIADY, M. Y., 2017. Rumen discoloration of growing lambs fed with diets containing different levels of neutral detergent fibre. Pakistan Journal of Zoology, 49: 1847–1855. http://dx.doi.org/10.17582/journal.pjz/2017.49.5.1847.1855
AMEEN, K. A., SAFWAT, M., SALAMA, R., and AWAD, A. A., 2023. Effect of sodium bicarbonate and ionophore supplementation on nutrients digestibility and growth performance of lambs fed high concentrate diets. Egyptian Journal of Nutrition and Feeds, 26: 261-271. https://doi.org/10.21608/ejnf.2023.332850
ANDRADE, P. V. D., and SCHMIDELY, P., 2006. Influence of percentage of concentrate in combination with rolled canola seeds on performance, rumen fermentation and milk fatty acid composition in dairy goats. Livestock Science, 104: 77-90. https://doi.org/10.1016/j.livsci.2006.03.010
ASADI, M., TOGHDORY, A., GHOORCHI, T., and KARGR, S., 2024. The Effects of Diet Concentrate and Mineral Buffer Types on Fattening Lambs Performance, Nutrient Digestibility, Blood Metabolites, Rumen Fermentation and Carcass Traits. Iranian Journal of Applied Animal Science, 14(2): 215-225. https://www.researchgate.net/publication/381924853
AYDIN, O.D., MERHAN, O., and YILDIZ, G., 2020. The effect of sodium bentonite on growth performance and some blood parameters in post-weaning Tuj breed lambs Ankara Üniversitesi Veteriner Fakültesi Dergisi, 67: 235-241. https://doi.org/10.33988/auvfd.590696
AZADBAKHT, S., KHADEM, A. A., and NOROUZIAN, M. A., 2017. Bentonite supplementation can improve performance and fermentation parameters of chronic lead-exposed lambs. Environmental Science and Pollution Research, 24: 5426-5430.https://doi.org/10.1007/s11356-016-8263-z
BANCROFT, J. D., and LAYTON, C., 2019. The hematoxylins and eosin. In: Theory and Practice of Histological Tech-niques. Suvarna SK, Layton C and Bancroft JD. eds. 8th edition UK: Elsevier, pp. 126-184.
BARTOS, S., MAROUNEK, M., PETRZIK, J., KOPECNY, J., KOLOUCH, F., and KALACNJUK, G. I., 1982. The effect of bentonite on rumen fermentation and nitrogen metabolism in ruminants. Biol. Chem. Vet. Praha, XVIII:333-346. https://www.cabidigitallibrary.org/doi/full/10.5555/19821440346
BLANCO, C., GIRALDEZ, F. J., PRERTO, N., BENAVIDES, J., WATTEGEDERA, S., MORAN, L., ANDRES, S., and BODAS, R., 2015. Total mixed ration pellets for light fattening lambs: effects on animal health. Animal, 9: 258-266. https://doi.org/10.1017/S1751731114002249
BOGUSLAWSKA-TRYK, M., BOGUCKA, J., DANKOWIAKOWSKA, A., and WALASIK, K., 2020. Small intestine morphology and ileal biogenic amines content in broiler chickens fed diets supplemented with lignocellulose. Livestock Science, 241: 104189. https://doi.org/10.1016/j.livsci.2020.104189
CECONI, I., RUIZ_MORENO, M. J., DILORENZO, N., DICOSTANZO, A., and CRAWFORD, G. I., 2015. Effect of urea inclusion in diets containing corn dried distillers grains on feedlot cattle performance, carcass characteristics, ruminal fermentation, total tract digestibility, and purine derivatives-to-creatinine index. Journal of Animal Science, 93: 357-369. https://doi.org/10.2527/jas.2014-8214
CHEN, G. J., SONG, S. D., WANG, B. X., ZHANG, Z. F., PENG, Z. L., GUO, C. H., and WANG, Y., 2015. Effects of forage: concentrate ratio on growth performance, ruminal fermentation and blood metabolites in housing-feeding yaks. Asian-Australasian Journal of Animal Sciences, 28: 1736. https://doi.org/10.5713/ajas.15.0419
COTTYN, B. G., BOUCQUE, C. V., and CHEMISTRY, F., 1968. Rapid method for the gas-chromatographic determination of volatile fatty acids in rumen fluid. Journal of Agricultural and Food Chemistry, 16: 105-107. https://pubs.acs.org/doi/10.1021/jf60155a002
CRUYWAGEN, C. W., TAYLOR, S., BEYA, M. M., and CALITZ, T., 2015. Theeffect of buffering dairy cow diets with limestone, calcareous marine algae, or sodium bicarbonate on ruminal pH profiles, production responses, and rumen fermentation. Journal of dairy Science, 98: 5506. https://doi.org/10.3168/jds.2014-8875
DUTTA, T. K., CHATTERJEE, A., BHAKAT, C., MANDAL, D., RAI, S., MOHAMMAD, A., SATPATHY, D., YADAV, S. K., and DAS, A. K., 2023. Effect of different levels of concentrate supplementation on feed intake, growth performance, carcass traits and composition in finisher Barbari kids reared under intensive system. Indian Journal of Animal Sciences, 93: 82-89.https://doi.org/10.56093/ijans.v93i1.127288
ENEMARK, J. M. 2008. The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA): A review. The veterinary journal, 176: 32-43.https://doi.org/10.1016/j.tvjl.2007.12.021
ENGSTAD, R. E., ROBERTSEN, B., and FRIVOLD, E., 1992. Yeast glucan induces increase in lysozyme and complement-mediated haemolytic activity in Atlantic salmon blood. Fish and Shellfish Immunology, 2: 287-297. https://doi.org/10.1016/S1050-4648(06)80033-1
FARGHALY, M. M., HASSAN, E. H., and ABDO, S. G., 2019. Influence of sodium bicarbonate supplementation on nutrients digestibility, milk production, rumen fermentation and some blood parameters in sheep. Egyptian Journal of Animal Production, 56: 71-77. https://dx.doi.org/10.21608/ejap.2019.92999
FISKE, R. A., and ADAMS, L. G., 1985. Immune responsiveness and lymphoreticular morphology in cattle fed hypo-and hyperalimentative diets. Veterinary immunology and immunopathology, 8: 225-244. https://doi.org/10.1016/0165-2427(85)90083-2
GERICKE, S., and KURMIES, B., 1952. Die kolorimetrische Phosphorsäurebestimmung mit Ammonium‐Vanadat‐Molybdat und ihre Anwendung in der Pflanzenanalyse. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde, 59: 235-247. https://doi.org/10.1002/j.1522-2624.1952.tb00066.x
GOETSCH, A. L., and GALYKAN, M., 1982. Effect of dietary concentrate level on rumen fluid dilution rate. Canadian Journal of Animal Science, 62: 649-652. https://doi.org/10.4141/cjas82-076
GRABHERR, H., SPOLDERS, M., FURLL, M., and FLACHOWSKY, G., 2009. Effect of several doses of zeolite A on feed intake, energy metabolism and on mineral metabolism in dairy cows around calving. Journal of Animal Physiology and Animal Nutrition, 93: 221-236. https://doi.org/10.1111/j.1439-0396.2008.00808.x
GROSS, W. B., and SIEGEL, H. B., 1983. Evaluation of The Heterefil/Lymphocite Ratio of Measure in Chickens. Avian Disease, 27: 972-979. https://doi.org/10.20884/1.sb.2017.4.2.401
HASHEMI, M., ZAMANI, F., VATANKHAH, M., and ZADEH, S. H., 2012. Effect of sodium bicarbonate and magnesium oxide on performance and carcass characteristics of Lori-bakhtiari fattening ram lambs. Global Veterinaria, 8: 89-92. http://www.idosi.org/gv/GV8(1)12/16.pdf
HYUN, Y., ELLIS, M., CURTIS, S. E., and JOHNSON, R. W., 2005. Environmental temperature, space allowance, and regrouping: Additive effects of multiple concurrent stressors in growing pigs. Journal of Swine Health and Production, 13: 131-138. http://www.aasv.org/shap.html
JIANG, S. Z., YANG, Z. B., YANG, W. R., LI, Z., ZHANG, C. Y., LIU, X. M., and WAN, F. C., 2015. Diets of differentially processed wheat alter ruminal fermentation parameters and microbial populations in beef cattle. Journal of Animal Science, 93: 5378-5385. https://doi.org/10.2527/jas.2015-9547
JIN, Y., and ZHOU, Y., 2022. Effects of concentrate level and chromium-methionine supplementation on the performance, nutrient digestibility, rumen fermentation, blood metabolites, and meat quality of Tan lambs. Animal bioscience, 35: 677. https://doi.org/10.5713/ab.20.0802
JOHNSON, M. A., SWEENEY, T. F., and MULLER, L. D., 1988. Effects of feeding synthetic zeolite A and sodium bicarbonate on milk production nutrient digestion, and rate of digesta passage in dairy cows. Journal of Dairy Science, 71: 946-953. https://doi.org/10.3168/jds.S0022-0302(88)79640-X
KAWAHARA, E., UEDA, T., and NOMURA, S., 1991. In vitro phagocytic activity of white-spotted char blood cells after injection with Aeromonas salmonicida extracellular products. Fish Pathology, 26: 213-214. https://doi.org/10.3147/jsfp.26.213
KOUL, V., KUMAR, U., SAREEN, V.K., and SINGH, S., 1998. Effect of sodium bicarbonate supplementation on ruminal microbial populations and metabolism in buffalo calves. Indian Journal of Animal Science, 68: 629–631. https://epubs.icar.org.in/index.php/IJAnS/article/view/21023
LE RUYET, P., and TUCKER, W. B., 1992. Ruminal buffers: Temporal effects on buffering capacity and pH of ruminal fluid from cows fed a high concentrate diet. Journal of dairy science, 75: 1069-1077. https://doi.org/10.3168/jds.S0022-0302(92)77851-5
LETTAT, A., NOZIERE, P., SILBERBERG, M., MORGAVI, D. P., BERGER, C., and MARTIN, C., 2010. Experimental feed induction of ruminal lactic, propionic, or butyric acidosis in sheep. Journal of animal science, 88: 3041-3046. https://doi.org/10.2527/jas.2010-2926
LI, M., PENNER, G. B., HERNANDEZ‐SANABRIA, E., OBA, M., and GUAN, L. L., 2009. Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. Journal of Applied Microbiology, 107: 1924-1934. https://doi.org/10.1111/j.1365-2672.2009.04376.x
LIU, H., XU, T., XU, S., MA, L., HAN, X., WANG, X., and ZHAO, X., 2019. Effect of dietary concentrate to forage ratio on growth performance, rumen fermentation and bacterial diversity of Tibetan sheep under barn feeding on the Qinghai-Tibetan plateau. PeerJ, 7: e7462. https://doi.org/10.7717/peerj.7462
LOOR, J. J., UEDA, K., FERLAY, A., CHILLIARD, Y., and DOREAU, M., 2004. Biohydrogenation, duodenal flow, and intestinal digestibility of trans fatty acids and conjugated linoleic acids in response to dietary forage: concentrate ratio and linseed oil in dairy cows. Journal of Dairy Science, 87: 2472-2485. https://doi.org/10.3168/jds.S0022-0302(04)73372-X
MCCOARD, S. A., CRISTOBAL-CARBALLO, O., KNOL, F. W., HEISER, A., KHAN, M. A., HENNES, N., and STEVENS, D. R., 2020. Impact of early weaning on small intestine, metabolic, immune and endocrine system development, growth and body composition in artificially reared lambs. Journal of Animal Science, 98: 1-11. https://doi.org/10.1093/jas/skz356
MINUTI, A., AHMED, S., TREVISI, E., POCCIOLI-CAPPELLI, F., BERTONI, G., JAHAN, N., and BANI, P., 2014. Experimental acute rumen acidosis in sheep: Consequences on clinical, rumen, and gastrointestinal permeability conditions and blood chemistry. Journal of animal science, 92: 3966-3977. https://doi.org/10.1111/j.1365-2672.2009.04376.x
MOORBY, J. M., DEWHURSTt, R. J., EVANS, R. T., and DANELON, J. L., 2006. Effects of dairy cow diet forage proportion on duodenal nutrient supply and urinary purine derivative excretion. Journal of Dairy Science, 89: 3552-3562. https://doi.org/10.1016/j.livsci.2013.11.013
NANGIA, O. P., and SHARMA, R., 1994. Effect of Feeding Sodium Bicarbonate on Rumen Fermentation and Efficiency of Microbial Protein Synthesis in Buffaloes. Journal of Applied Animal Research, 6:113-120. https://doi.org/10.1080/09712119.1994.9706033
NRC (National Research Council), 2007. Nutrient Requirements of Small Ruminants, Sheep, Goats, Cervids, and New World Camelids. National Academy Press, Washington, D.C., USA.
OLIVEIRA, K. A., JUNIOR, G. D. L. M., ARAYJO, C. M., SOUSA, L. F., DE ARAUJO, M. J. P., and SIQUEIRA, M. T. S., 2020. Different roughage to concentrate ratios in extruded ration and metabolic parameters of growing lambs Diferentes relações de volumoso e concentrado na ração extrusada e parâmetros metabólicos de borregas em crescimento. Semina: Ciências Agrárias, Londrina, 41: 1653-1666. https://doi.org/10.5433/1679-0359.2020v41n5p1653
OLIVEIRA, M. A., ALVES, S. P., SANTOS-SILVA, J., and BESSA, R. J., 2016. Effects of clays used as oil adsorbents in lamb diets on fatty acid composition of abomasal digesta and meat. Animal Feed Science and Technology, 213: 64-73. https://doi.org/10.1016/j.anifeedsci.2016.01.006
PARENTE, H. N., PARENTE, M. D. O. M., GOMES, R. M. D. S., SODRE, W. D. J. D. S., MOREIRA FILHO, M. A., RODRIGUES, R. C., and ARAUJO, J. D. S., 2016. Increasing levels of concentrate digestibility, performance and ingestive behavior in lambs. Revista Brasileira de saúde e produção animal, 17: 186-194. https://doi.org/10.1590/S1519-99402016000200006
PARSONS, T. R., MAITA, Y., and LALLI, C. M., 1984. A manual of chemical and biological methods for seawater analysis. Oxford: Pergamon Press.
POLYORACH, S., WANAPAT, M., and CHERDTHONG, A., 2014. Influence of yeast fermented cassava chip protein (YEFECAP) and roughage to concentrate ratio on ruminal fermentation and microorganisms using in vitro gas production technique. Asian-Australasian journal of animal sciences, 27: 36-45.https://doi.org/10.5713/ajas.2013.13298
RAINGER, G. E., and ROWLEY, A. F., 1993. Antibacterial activity in the serum and mucus of rainbow trout, Oncorhynchus mykiss, following immunisation with Aeromonas salmonicida. Fish and Shellfish Immunology, 3: 475-482.https://doi.org/10.1006/fsim.1993.1046
SALEH, M. S., ABDEL-RAOUF, E. M., MOHSEN, M. K., and SALEM, A. Y., 1999. Bentonite supplemention to concentrate ration for lactating buffaloes.Animal Production Deptartement, Faculty of Agriculture Kafr El-Sheikh, Tanta Univiversity, Egypt, Egyptian Journal-of-Nutrition-and-Feeds, 2: 67-78. https://www.cabidigitallibrary.org/doi/full/10.5555/20001415595
SANTRA, A., CHATURVEDI, O. H., TRIPATHI, M. K., KUMAR, R., and KARIM, S. A., 2003. Effect of dietary sodium bicarbonate supplementation on fermentation characteristics and ciliate protozoal population in rumen of lambs. Small Ruminant Research, 47: 203-212. https://doi.org/10.1016/S0921-4488(02)00241-9
SEEMA, S., UDDIN, M., TAMANNA, S., ESHA, K., Al-NOMAN, K., HOQUE, S., SELIM, A., RAHMAN, M, 2025. Potential of Ionophores as A Feed Additive for Sustainable Beef Cattle Production: Review article. Journal of Applied Veterinary Sciences, 10: 35-46. https://doi.org/10.21608/javs.2025.348090.1508
SHORT, K., and DERRICKSON, E. M., 2020. Compensatory changes in villus morphology of lactating Mus musculus in response to insufficient dietary protein. Journal of Experimental Biology, 223: 1-5. https://doi.org/10.1242/jeb.210823
SLAVIN, W. 1968. Atomic absorption spectroscopy.Interscience publishers, Inc. New York, 307 pp.
SUN, D., LI, H., MAO, S., ZHU, W., and LIU, J., 2018. Effects of different starch source of starter on small intestinal growth and endogenous GLP-2 secretion in preweaned lambs. Journal of Animal Science, 96: 306-317. https://doi.org/10.1093/jas/skx029
TREVISI, E., and BERTONI, G., 2009. Some physiological and biochemical methods for acute and chronic stress evaluationin dairy cows. Italian Journal of Animal Science, 8: 265-286. https://doi.org/10.4081/ijas.2009.s1.265
TRIPATHI, M. K., SANTRA, A., CHATURVEDI, O. H., and KARIM, S. A., 2004. Effect of sodium bicarbonate supplementation on ruminal fluid pH, feed intake, nutrient utilization and growth of lambs fed high concentrate diets. Animal feed science and technology, 111: 27-39.https://doi.org/10.1016/j.anifeedsci.2003.07.004.
VAN SOEST, P. J. 1973. Collaborative study of acid-detergent fiber and lignin. Journal of the Association of Official Analytical Chemists, 56: 781-784. https://doi.org/10.1093/jaoac/56.4.781
VAN SOEST, P. J. 1994. Nutritional Ecology of the Ruminant. 2nd ed. Ithaca, NY, USA: Cornell University Press.
VAN SOEST, P. V., ROBERTSON, J. B., and LEWIS, B. A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of dairy science, 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
WARDLAW, A. C., and UNKLES, S. E., 1978. Bactericidal activity of coelomic fluid from the sea urchin Echinus esculentus. Journal of Invertebrate Pathology, 32(1), 25-34. https://doi.org/10.1016/0022-2011(78)90170-2
WEST, J. W., COPPOCK, C. E., NAVE, D. H., LABORE, J. M., GREENE, L. W., and ODOM, T. W., 1987. Effects of potassium carbonate and sodium bicarbonate on rumen function in lactating Holstein cows. Journal of dairy science, 70: 81-90. https://doi.org/10.3168/jds.S0022-0302(87)79982-2
YANG, W. Z., BEAUCHEMIN, K. A., and RODE, L. M., 2001. Effects of grain processing, forage to concentrate ratio, and forage particle size on rumen pH and digestion by dairy cows. Journal of dairy science, 84: 2203-2216. https://doi.org/10.3168/jds.S0022-0302(01)74667-X
WANG, T. 2013. Effects of different dietary concentrate to forage ratios on rumen fluid pH and VFA levels and blood VFA levels in dairy goats. Animal Husbandry and Veterinary Medicine. https://en.cnki.com.cn/Article_en/CJFDTOTAL-XMYS201304003.htm
ZHANG, X., JIAO, T., MA, S., CHEN, X., WANG, Z., ZHAO, S., and REN, Y., 2023. Effects of different proportions of stevia stalk on nutrient utilization and rumen fermentation in ruminal fluid derived from sheep. PeerJ, 11: e14689.https://doi.org/10.7717/peerj.14689
ZHOU, L., RAZA, S. H. A., HAN, L., MA, B., ALTHOBAITI, F., KESBA, H., and GUI, L. S., 2022. Effects of dietary concentrate: Forage ratio on development of gastrointestinal tract in black Tibetan sheep. Journal of Applied Animal Research, 50: 192-197. https://doi.org/10.1080/09712119.2022.2053131