• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Indexing and Abstracting
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of Applied Veterinary Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 10 (2025)
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 9 (2024)
Volume Volume 8 (2023)
Volume Volume 7 (2022)
Volume Volume 6 (2021)
Volume Volume 5 (2020)
Volume Volume 4 (2019)
Volume Volume 3 (2018)
Volume Volume 2 (2017)
Volume Volume 1 (2016)
Khalil, H., Faris, G. (2025). A Study Investigating the Synergistic Analgesic Effects of Nefopam and Medetomidine in a Multimodal Pain Management Approach in Mice. Journal of Applied Veterinary Sciences, 10(3), 129-136. doi: 10.21608/javs.2025.389940.1628
Hazem Ahmed Khalil; Gada Abdul Al-munem Faris. "A Study Investigating the Synergistic Analgesic Effects of Nefopam and Medetomidine in a Multimodal Pain Management Approach in Mice". Journal of Applied Veterinary Sciences, 10, 3, 2025, 129-136. doi: 10.21608/javs.2025.389940.1628
Khalil, H., Faris, G. (2025). 'A Study Investigating the Synergistic Analgesic Effects of Nefopam and Medetomidine in a Multimodal Pain Management Approach in Mice', Journal of Applied Veterinary Sciences, 10(3), pp. 129-136. doi: 10.21608/javs.2025.389940.1628
Khalil, H., Faris, G. A Study Investigating the Synergistic Analgesic Effects of Nefopam and Medetomidine in a Multimodal Pain Management Approach in Mice. Journal of Applied Veterinary Sciences, 2025; 10(3): 129-136. doi: 10.21608/javs.2025.389940.1628

A Study Investigating the Synergistic Analgesic Effects of Nefopam and Medetomidine in a Multimodal Pain Management Approach in Mice

Article 12, Volume 10, Issue 3, July 2025, Page 129-136  XML PDF (376.11 K)
Document Type: Original Article
DOI: 10.21608/javs.2025.389940.1628
View on SCiNiTO View on SCiNiTO
Authors
Hazem Ahmed Khalil; Gada Abdul Al-munem Faris email orcid
Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Mosul, Mosul, Iraq
Receive Date: 28 May 2025,  Revise Date: 16 June 2025,  Accept Date: 26 June 2025 
Abstract
This study explored the type of analgesic interaction between nefopam and medetomidine and evaluated their safety profiles in a mouse model as no previous studies had examined their pharmacological interaction at the antinociceptive level. Adult male and female mice (n=6-7 per group) were administered ascending/descending doses of nefopam or medetomidine alone or in a combination via intraperitoneal injection. Analgesic efficacy was determined using the hot plate test (55°°C) and writhing reflex technique. The ED50 values were calculated via the up-and-down method, isobolographic analysis assessed drug interaction types and LD50 values were derived to assess acute toxicity. Nefopam alone exhibited an ED50 of 5.66 mg/kg intraperitoneal (I.P.), while medetomidine showed an ED50 of 93.05 mg/kg I.P. Combined administration of nefopam with a fixed medetomidine dose (0.65 mg/kg) reduced the ED50 of nefopam by 44%. At the double ED50 dosage for each drug, concurrent intraperitoneal injection of the two drugs completely inhibits the writhing reflex (100%) elicited by acetic acid compared with each drug alone and with the control group. Isobolographic analysis confirmed synergetic interaction between two drugs at 1:1 and 0.5:0.5 of ED50 ratios, with interaction indices (y) of 0.92 and 0.58, respectively. The LD50 values were 78.46 mg/kg (nefopam) and 1230.75 µg/kg (medetomidine), yielding therapeutic indices (LD50/ED50) of 14 and 13, indicative of wide safety margins. These findings demonstrate a potent synergistic analgesic effect between nefopam and medetomidine, allowing for significant dose reductions without losing efficacy. This combination’s favorable safety profile supports its clinical potential as a non-opioid alternative for acute pain management.
Keywords
Isobolographic analysis; Medetomidine; Mice model; Nefopam; Synergistic analgesic
Main Subjects
Pharmacology and toxicology
References
ABDUL HAMEED, Y., and NASER, A., 2025. Exploring the anxiolytic and neurobehavioral benefits of serratiopeptidase in mice. Journal of Applied Veterinary Sciences, 10(1), pp. 57–63. https://dx.doi.org/10.21608/javs.2024.330246.1455

AL-JADER, G.H., and TAQA, G.A., 2014. Isobolographic analysis of the antinociceptive interaction between tramadol and diphenhydramine in mice. International Journal of Enhanced Research in Science, Technology & Engineering, 3(2), pp. 45–53. 

AL-AWWADY, A. N., HASAN, A. N., and ABDUL-MAHDI KADHIM, W., 2020. Comparison of paracetamol vs. paracetamol nefopam combination vs. paracetamol tramadol combination intravenous infusion for intraoperative and immediate postoperative analgesia for laparoscopic cholecystectomy. La Prensa Medica Argentina, 106, S1.

AREMU, A., ORIDUPA, O.A., and BASHAR, N.B., 2024. Effect of different fractions of Lawsonia inermis Linn on haematobiochemical changes, osmotic fragility, and lipid profile in streptozotocin-induced diabetic Wistar rats. Journal of Applied Veterinary Sciences, 9(3), pp. 19–30. https://dx.doi.org/10.21608/javs.2024.276758.1328

ALQAYSI, M. G. I., and ALABBAS, N. N. A., 2024. The properties of nefopam as analgesic co-administration with caffeine as adjuvant in induced pain in mice. Journal of Research in Pharmacy, 28(5). http://dx.doi.org/10.29228/jrp.836

ANTAL, M. 2025. Molecular Anatomy of Synaptic and Extrasynaptic Neurotransmission Between Nociceptive Primary Afferents and Spinal Dorsal Horn Neurons. International Journal of Molecular Sciences, 26(5), 2356. https://doi.org/10.3390/ijms26052356

BARRETT, J. E. 2015. The pain of pain: challenges of animal behavior models. European Journal of Pharmacology, 753, 183–190. https://doi.org/10.1016/j.ejphar.2014.11.046

BAKER, S.A., AL-MODARESS, S.S. and AL-MALLAH, K.H., 2025. Histopathological study of the acute and chronic toxic effects of dimethyl mercury on liver and kidney of male albino rats. Journal of Applied Veterinary Sciences, 10(2), pp. 137-143. https://doi.org/10.21608/javs.2025.364375.1544

CHAE, J. W., KANG, D. H., LI, Y., KIM, S. H., LEE, H. G., CHOI, J. I., YOON, M. H., and KIM, W. M., 2020. Antinociceptive effects of nefopam modulating serotonergic, adrenergic, and glutamatergic neurotransmission in the spinal cord. Neuroscience Letters, 731, 135057.
https://doi.org/10.1016/j.neulet.2020.135057

DIXON, W. J. 1980. Efficient analysis of experimental observations. Annual Review of Pharmacology and Toxicology, 20(1), 441-462. https://doi.org/10.1146/annurev.pa.20.040180.002301

FAHIM S, A., and ALWAN A, T., 2022. Effects of ketorolac, xylazine, and bupivacaine multimodal analgesia on goats. Archives of Razi Institute, 77(2), 661-668.

GIRARD, P., CHAUVIN, M., and VERLEYE, M., 2016. Nefopam analgesia and its role in multimodal analgesia: a review of preclinical and clinical studies. Clinical and Experimental Pharmacology and Physiology, 43(1), 3-12. https://doi.org/10.1111/1440-1681.12506

GIRARD, P., COPPÉ, M.-C., VERNIERS, D., PANSART, Y., and GILLARDIN, J.-M., 2006. Role of catecholamines and serotonin receptor subtypes in nefopam-induced antinociception. Pharmacological Research, 54(3), 195-202. https://doi.org/10.1016/j.phrs.2006.04.008          

HASAN, M. M. 2018. Evaluating the sedative and analgesic effects of xylazine and its interaction with chlorpromazine in chicks, 32(2),9-3. https://doi.org/10.33899/ijvs.2019.153871

KANDA, T., MIZOGUCHI, Y., FURUMOTO, K., SHIMIZU, Y., MAETA, N., and FURUKAWA, T., 2020. Effect of intramuscular medetomidine administration on tear flow in rats. Veterinary Sciences, 7(2), 42.https://doi.org/10.3390/vetsci7020042

KHALIL, K. A., MOUSA, Y. J., and ALZUBAIDY, M. H., 2022. Pharmacokinetic criteria of ketoprofen and its cyclooxygenase-2 inhibition in mice: influence of xylazine administration. Macedonian Veterinary Review, 46, 27-33. https://doi.org/10.2478/macvetrev-2022-0031

KIM, K. H., and ABDI, S., 2014. Rediscovery of nefopam for the treatment of neuropathic pain. The Korean Journal of Pain, 27(2), 103-111.https://doi.org/10.3344/kjp.2014.27.2.103

KUMAR, R., AAKANKSHA, A. K., VERMA, N. K., SAXENA, A. C., and HOQUE, M., 2020. Systemic effects and clinical application of dexmedetomidine. Pharma Innovation Journal, 9(11), 241-246.  https://doi.org/10.22271/tpi.2020.v9.i11d.5344

LI, J.-X. 2019. Combining opioids and non-opioids for pain management: current status. Neuropharmacology, 158, 107619. https://doi.org/10.1016/j.neuropharm.2019.04.025

LI, Q., ZHUANG, Q., GU, Y., DAI, C., GAO, X., WANG, X., WEN, H., LI, X., and ZHANG, Y., 2018. Enhanced analgesic effects of nefopam in combination with acetaminophen in rodents. Biomedical Reports, 8(2), 176-183. https://doi.org/10.3892/br.2017.1032

MAO, J. 2012. Current challenges in translational pain research. Trends in Pharmacological Sciences, 33(11), 568-573. https://doi.org/10.1016/j.tips.2012.08.001

MIRANDA, H. F., NORIEGA, V., ZANETTA, P., PRIETO, J. C., PRIETO-RAYO, J. C., ARANDA, N., and SIERRALTA, F., 2014. Isobolographic analysis of the opioid-opioid interactions in a tonic and a phasic mouse model of induced nociceptive pain. Journal of Biomedical Science, 21, 1-9. https://doi.org/10.1186/s12929-014-0062-6

MULLER, P. Y., and MILTON, M. N., 2012. The determination and interpretation of the therapeutic index in drug development. Nature Reviews Drug Discovery, 11(10), 751-761.https://doi.org/10.1038/nrd3801

NASER, A.S., ALBADRANY, Y., SHAABAN, K.A., 2020. Isobolographic analysis of analgesic interactions of silymarin with ketamine in mice. Journal of the Hellenic Veterinary Medical Society, 71(2), 2171–2178. https://doi.org/10.12681/jhvms.23653

O'NEILL, A., and LIRK, P., 2022. Multimodal analgesia. Anesthesiology Clinics, 40(3), 455-468.https://doi.org/10.1016/j.anclin.2022.04.002

PETROIANU, G. A., ALOUM, L., and ADEM, A., 2023. Neuropathic pain: Mechanisms and therapeutic strategies. Frontiers in Cell and Developmental Biology, 11(3), 1072629.https://doi.org/10.3389/fcell.2023.1072629

RAFFA, R. B., 2001. Pharmacology of oral combination analgesics: rational therapy for pain. Journal of Clinical Pharmacy and Therapeutics, 26(4), 257-264.https://doi.org/10.1046/j.1365-2710.2001.00355.x

RAI, A., MENG, H., WEINRIB, A., ENGELSAKIS, M., KUMBHARE, D., GROSMAN-RIMON, L., KATZ, J., and CLARKE, H., 2017. A review of adjunctive CNS medications used for the treatment of post-surgical pain. CNS Drugs, 31, 605-615.https://doi.org/10.1007/s40263-017-0440-1

RODGERS, R. J., and DALVI, A., 1997. Anxiety, defence and the elevated plus-maze. Neuroscience and Biobehavioral Reviews, 21(6), 801-810.https://doi.org/10.1016/S0149-7634(96)00058-9

SALARPOUR, M., SAKHAEE, E., SAMIMI, A. S., and AZARI, O., 2022. Comparative evaluation of the sedative and physiological effects of medetomidine alone and in combination with pethidine, morphine, tramadol, and methadone in goats. Veterinary Medicine and Science, 8(4), 1664-1670.https://doi.org/10.1002/vms3.806

SHABAN, K. A., HAMED, Z. S., and FARIS, G. A.-M., 2024. The effect of metoclopramide on the antinociceptive, locomotor and neurobehavioral effects of metamizole in mice. Macedonian veterinary review, 47(2), 159-166. https://doi.org/10.2478/macvetrev-2024-0027

SHABAN, K. A., IBRAHIM, M. H., and FARIS, G. A., 2020. Evaluation of the antinociceptive effect of xylazine and its interaction with metoclopramide in the acute pain model in mice. Iraqi Journal of Veterinary Sciences, 34(2). https://doi.org/10.33899/ijvs.2019.126070.1226

SINCLAIR, M. D. 2003. A review of the physiological effects of α2-agonists related to the clinical use of medetomidine in small animal practice. The Canadian Veterinary Journal, 44(11), 885.

SMITH, H., and ELLIOTT, J., 2001. Alpha2 receptors and agonists in pain management. Current Opinion in Anesthesiology, 14(5), 513-518.https://doi.org/10.1097/00001503-200110000-00009

TAQA, G.A., 2012. Synergism of the analgesic activities of tramadol with α2 adrenoreceptor agonist xylazine in mice. Iraqi Journal of Veterinary Sciences, 26(2), 109-113. https://doi.org/10.33899/ijvs.2012.67485

TALLARIDA, R. J. 2011. Quantitative methods for assessing drug synergism. Genes and Cancer, 2(11), 1003-1008. https://doi.org/10.1177/1947601912440575

TANEJA, A., DELLA PASQUA, O., and DANHOF, M., 2017. Challenges in translational drug research in neuropathic and inflammatory pain: the prerequisites for a new paradigm. European Journal of Clinical Pharmacology, 73, 1219-1236.https://doi.org/10.1007/s00228-017-2301-8

THANOON, A. I., and FARIS, G. A., 2023. Evaluation the combination of chlorpheniramine and tramadol at a level of thermal and visceral antinociceptive in a mouse acute pain model. Iraqi Journal of Veterinary Sciences, 37(3), 619-627. https://doi.org/10.33899/ijvs.2022.135562.2496

TICK, H., NIELSEN, A., PELLETIER, K. R., BONAKDAR, R., SIMMONS, S., GLICK, R., RATNER, E., LEMMON, R. L., WAYNE, P., and ZADOR, V., 2018. Evidence-based nonpharmacologic strategies for comprehensive pain care: the consortium pain task force white paper. Explore, 14(3), 177-211. https://doi.org/10.1016/j.explore.2018.02.001

VERLEYE, M., ANDRÉ, N., HEULARD, I., and GILLARDIN, J.-M., 2004. Nefopam blocks voltage-sensitive sodium channels and modulates glutamatergic transmission in rodents. Brain Research, 1013(2), 249-255.https://doi.org/10.1016/j.brainres.2004.04.035

VIRTANEN, R., SAVOLA, J.-M., SAANO, V., and NYMAN, L., 1988. Characterization of the selectivity, specificity and potency of medetomidine as an α2-adrenoceptor agonist. European Journal of Pharmacology, 150(1-2), 9-14https://doi.org/10.1016/0014-2999(88)90744-3

VRANKEN, J. H., 2009. Mechanisms and treatment of neuropathic pain. Central Nervous System Agents in Medicinal Chemistry, 9(1), 71-78. https://doi.org/10.2174/187152409787601932

YIN, Z.-Y., LI, L., CHU, S.-S., SUN, Q., MA, Z.-L., and GU, X.-P., 2016. Antinociceptive effects of dehydrocorydaline in mouse models of inflammatory pain involve the opioid receptor and inflammatory cytokines. Scientific Reports, 6(1), 27129.https://doi.org/10.1038/srep27129

Statistics
Article View: 127
PDF Download: 114
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.