Kassem, A., Khattab, M., Ismael, E., Osman, A. (2025). Impact of climate change on ruminant health and Emerging Diseases in Egypt. Journal of Applied Veterinary Sciences, 10(3), 106-117. doi: 10.21608/javs.2025.379741.1599
Ashraf Kassem; Marwa S. Khattab; Elshaimaa Ismael; Ahmed H. Osman. "Impact of climate change on ruminant health and Emerging Diseases in Egypt". Journal of Applied Veterinary Sciences, 10, 3, 2025, 106-117. doi: 10.21608/javs.2025.379741.1599
Kassem, A., Khattab, M., Ismael, E., Osman, A. (2025). 'Impact of climate change on ruminant health and Emerging Diseases in Egypt', Journal of Applied Veterinary Sciences, 10(3), pp. 106-117. doi: 10.21608/javs.2025.379741.1599
Kassem, A., Khattab, M., Ismael, E., Osman, A. Impact of climate change on ruminant health and Emerging Diseases in Egypt. Journal of Applied Veterinary Sciences, 2025; 10(3): 106-117. doi: 10.21608/javs.2025.379741.1599
Impact of climate change on ruminant health and Emerging Diseases in Egypt
1Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt
2Department of Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Egypt
Receive Date: 05 May 2025,
Revise Date: 04 June 2025,
Accept Date: 07 June 2025
Abstract
Climate change is one of the biggest risks to animal health. Although extensive livestock production was one of the major contributing causes of this change. Egypt’s climate has unique factors that are influenced by its geographic position. The average temperature throughout the year, relative humidity and heat waves in Egypt were escalating, especially in Upper Egypt. There is a direct and indirect link between climate change and animal diseases, which present as a serious health threat. Ruminants are stressed by meteorological changes, which lower their immunity and make them more susceptible to infections. In ruminant animals, climate change can lead to higher temperatures and humidity levels that facilitate the reproduction, survival, and transmission of certain bacteria, viruses, and parasites that cause diseases. In livestock production, heat stress (HS) is a major stressor as it acts as a severe climate shock. Multiple weather variables contribute to the adverse effects of HS, such as high ambient temperatures, humidity, solar radiation, and wind speeds, which negatively impact animal welfare and productivity. The aim of this review article is to summarize the current state of knowledge regarding the influence of climate and climate change on the health of food-producing cattle and sheep as well as explore its potential relationship with increased incidence of ill bleeding, jaundice and feverish cases in slaughtered animals.
ABEYTA, M. A., AL-QAISI, M., HORST, E. A., MAYORGA, E. J., RODRIGUEZ-JIMENEZ, S., GOETZ, B. M., and BAUMGARD, L. H., 2023. Effects of dietary antioxidant supplementation on metabolism and inflammatory biomarkers in heat-stressed dairy cows. Journal of Dairy Science, 106(2): 1441-1452. https://doi.org/10.3168/jds.2022-22338.
ABRAHAM, S. M., LAWRENCE, T., KLEIMAN, A., WARDEN, P., MEDGHALCHI, M., TUCKERMANN, J., and CLARK, A. R., 2006. Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. The Journal of Experimental Medicine, 203, (8): 1883-1889. https://doi.org/10.1084/jem.20060336.
ALI, M. Z., CARLILE, G., and GIASUDDIN, M., 2020. Impact of global climate change on livestock health: Bangladesh perspective. Open veterinary journal, 10(2): 178-188. https://doi.org/10.4314/ovj.v10i2.7.
ANGEL, S. P., BAGATH, M., SEJIAN, V., KRISHNAN, G., and BHATTA, R., 2018. Expression patterns of candidate genes reflecting the growth performance of goats subjected to heat stress. Molecular biology reports, 45: 2847-2856. https://doi.org/10.1007/s11033-018-4440-0.
ASSUMAIDAEE, A. A., ZAMRI-SAAD, M., JASNI, S., and NOORDIN, M. M., 2010. The role of oxidative stress in Brachiaria decumbens toxicity in sheep. Pertanika Journal of Tropical Agricultural Science, 33(1):151-157.
ATTA, M.A.A., MARAI, I.F.M., EL-DARAWANY, A.A.M. and EL-MASRY, K.A., 2014. Adaptability of bovine calves under subtropical environment. Zagazig Journal of Agriculture Research, 41(4):793-802.
AYROUD, M., POPP, J. D., VANDERKOP, M. A., YOST, G. S., HAINES, D. M., MAJAK, W., and MCALLISTER, T. A., 2000. Characterization of acute interstitial pneumonia in cattle in southern Alberta feedyards. The Canadian Veterinary Journal, 41(7):547.
BAUMGARD, L. H., and RHOADS Jr, R. P., 2013. Effects of heat stress on postabsorptive metabolism and energetics. Annu. Rev. Anim. Biosci., 1(1):311-337.
BEUGNET, F., and CHALVET-MONFRAY, K., 2013. Impact of climate change in the epidemiology of vector-borne diseases in domestic carnivores. Comparative immunology, microbiology and infectious diseases, 36(6): 559-566. https://doi.org/10.1016/j.cimid.2013.07.003.
BISWAS, B. K. 2022. Effect of climate change on vector-borne disease. In Emerging issues in climate smart livestock production . Academic Press. 263-316. https://doi.org/10.1016/B978-0-12-822265-2.00006-5.
BRYDON, L., MAGID, K., and STEPTOE, A., 2006. Platelets, coronary heart disease, and stress. Brain, behavior, and immunity, 20(2):113-119.https://doi.org/10.1016/j.bbi.2005.08.002.
CELI, P. 2011. Oxidative stress in ruminants. Studies on veterinary medicine, 191-231.
CELMA, C. C., BOYCE, M., VAN RIJN, P. A., ESCHBAUMER, M., WERNIKE, K., HOFFMANN, B., and ROY, P., 2013. Rapid generation of replication-deficient monovalent and multivalent vaccines for bluetongue virus: protection against virulent virus challenge in cattle and sheep. Journal of virology, 87(17): 9856-9864.https://doi.org/10.1128/JVI.01514-13.
CHAIDANYA, K., SHAJI, S., NIYAS, A., SEJIAN, V., RAGHAVENDRA, B., BAGATH, M., and GIRISH, V., 2015. Climate change and livestock nutrient availability: impact and mitigation,4(3) https://doi.org/10.4172/2325-9590.1000160.
CHAIDANYA, K., SOREN, N. M., SEJIAN, V., BAGATH, M., MANJUNATHAREDDY, G. B., KURIEN, E. K., and BHATTA, R., 2017. Impact of heat stress, nutritional stress and combined (heat and nutritional) stresses on rumen associated fermentation characteristics, histopathology and HSP70 gene expression in goats. Journal of Animal Behaviour and Biometeorology, 5(2):36-48. https://doi.org/10.26667/2318-1265jabb.v5n2p36-48.
CHAN, C. H., PIEPER, I. L., ROBINSON, C. R., FRIEDMANN, Y., KANAMARLAPUDI, V., and THORNTON, C. A., 2017. Shear stress‐induced total blood trauma in multiple species. Artificial organs, 41(10):934-947. https://doi.org/10.1111/aor.12932.
CHENG, M., MCCARL, B., and FEI, C., 2022. Climate change and livestock production: a literature review. Atmosphere, 13(1):140. https://doi.org/10.3390/atmos13010140.
CHERNOBAY, L., MARAKUSHYN, D., ISAIEVA, I., KARMAZINA, I., ALEKSEIENKO, R., HLOBA, N., and SHENGER, S., 2020. Physiology of visceral systems: Respiration. Digestion and Nutrition. Energy metabolism and Thermoregulation. Excretion: workbook.
CHEVALIER, V., COURTIN, F., GUIS, H., TRAN, A., and VIAL, L., 2015. Climate change and vector-borne diseases. In Climate change and agriculture worldwide Dordrecht: Springer Netherlands.97-108. 10. https://doi.org/1007/978-94-017-7462-8_8.
CHOWDHURY, S. I., PANNHORST, K., SANGEWAR, N., PAVULRAJ, S., WEN, X., STOUT, R. W., and PAULSEN, D. B., 2021. BoHV-1-vectored BVDV-2 subunit vaccine induces BVDV cross-reactive cellular immune responses and protects against BVDV-2 challenge. Vaccines, 9(1): 46. https://doi.org/10.3390/vaccines9010046.
CHROUSOS, G. P., 2000. The role of stress and the hypothalamic–pituitary–adrenal axis in the pathogenesis of the metabolic syndrome: neuro-endocrine and target tissue-related causes. International Journal of Obesity, 24 (2):50-55.
COLLIER, R. J., ZIMBELMAN, R. B., RHOADS, R. P., RHOADS, M. L., and BAUMGARD, L. H., 2011. A re-evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high producing dairy cows. In Western Dairy Management Conf. Reno, NV. USA,113-125.
COOPER, T. K., ZHONG, Q., NABITY, M., ROSENBERG, G., and WEISS, W. J., 2012. Use of urinary biomarkers of renal ischemia in a lamb preclinical left ventricular assist device model. Artificial organs, 36(9):820-824. https://doi.org/10.1111/j.1525-1594.2011.01436.x.
DAS, R., SAILO, L., VERMA, N., BHARTI, P., SAIKIA, J., and KUMAR, R., 2016. Impact of heat stress on health and performance of dairy animals: A review. Veterinary world, 9(3):260.
DAS, R., SAILO, L., VERMA, N., BHARTI, P., SAIKIA, J., and KUMAR, R., 2016. Impact of heat stress on health and performance of dairy animals: A review. Veterinary world, 9(3):260. https://doi.org/10.36062/ijah.Symp.23.
DUBLIN, H. T., and OGUTU, J. O., 2015. Population regulation of African buffalo in the Mara–Serengeti ecosystem. Wildlife Research, 42(5): 382-393. https://doi.org/10.1071/WR14205.
DUFFY, E. M., TIETZE, S. M., KNOELL, A. L., ALUTHGE, N. D., FERNANDO, S. C., SCHMIDT, T. S., and PETERSEN, J. L., 2018. Rumen bacterial composition in lambs is affected by β-adrenergic agonist supplementation and heat stress at the phylum level. Translational Animal Science, 2(1):145-148. https://doi.org/10.1093/tas/txy052.
ELKHOULY, A. A., NEGM, A. M., and OMRAN, E. S. E., 2021. An overview of the Egyptian deserts’ resources. Groundwater in Egypt’s deserts, 13-38.
EL-TANTAWI, A. M., ANMING, B., LIU, Y., and GAMAL, G., 2021. An assessment of rainfall variability in northern Egypt. Arabian Journal of Geosciences, 14(13):1203. https://doi.org/10.1007/s12517-021-07272-3.
FAROOQ, U., SAMAD, H. A., SHEHZAD, F., and QAYYUM, A., 2010. Physiological responses of cattle to heat stress. World Appl. Sci. J, 8:38-43.
FAYED, R.H., BAWISH, B. M., and RÜEGGE, K., 2025. Effect of phytogenic feed additives (Herb-All-COOL) on milk production and fertility of dairy cows in hot seasons. Journal of Applied Veterinary Sciences, 10(1):92-100.https://doi.org/10.21608/javs.2024.337719.1466.
GAROFOLO, S. Q., WATSON, C., BIANCO, R. W., and ROBINSON, N. A., 2014. Cases of sudden death in a sheep model implanted with aortic bioprostheses. J. Vet. Sci. Med, 2(2):2-4.
GOMA, A. A., and PHILLIPS, C. J., 2021. The impact of anthropogenic climate change on Egyptian livestock production. Animals, 11(11): 3127. https://doi.org/10.3390/ani11113127.
GORNALL, J., BETTS, R., BURKE, E., CLARK, R., CAMP, J., WILLETT, K., and WILTSHIRE, A., 2010. Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 365 (1554): 2973-2989. https://doi:10.1098/rstb.2010.0158.
GREGORY, D. 2008. Shifting the Paradigm: Agricultural Marketing in a Product Conscious Age.
GREIFENHAGEN, S., and NOLAND, T. L., 2003. A synopsis of known and potential diseases and parasites associated with climate change. Ontario ministry of natural rescoures, forest research information, 154.
GUO, Z., GAO, S., DING, J., HE, J., MA, L., and BU, D., 2022. Effects of heat stress on the ruminal epithelial barrier of dairy cows revealed by micromorphological observation and transcriptomic analysis. Frontiers in Genetics, 12:768209. https://doi.org/10.3389/fgene.2021.768209.
HABEEB, A.A.M. 2020a. Impact of climate change in relation to temperature-humidity index on productive and reproductive efficiency of dairy cattle. Boffin Access Limited, International Journal of Veterinary and Animal Medicine, 3 (1):124-133.https:// doi.org/10.31021/ijnam.20203124.
HABEEB, A.A.M., ABDEL-SAMEE, A.M. and KAMAL, T.H., 1989. Effect of heat stress, feed supplementation and cooling technique on milk yield, milk composition and some blood constituents in Frisian cows under Egyptian conditions. Proceedings of 3rd Egyptian– British Conference on Animal, Fish and Poultry Production, Alexandria University, Egypt 629 – 635.
HABEEB, A.A.M., EL-GOHARY, E.S.H., SALEH, H.M. and ABOLNAGA, A. I., 2008. Effect of summer heat stress conditions and feeding protein level on blood components in Ossimi ewes and their suckling lambs. Egyptian Journal of Applied Science, 23:388-408.
HABEEB, A.A.M., EL-MASRY, K.A., and ATTA, M.A.A., 2014. Growth traits of purebred and crossbred bovine calves during winter and summer seasons. The 4th International Conference on Radiation Sciences and Applications, Taba, Egypt, 1-10.
HABEEB, A.A.M., FATMA, E.I.T. and OSMAN, S.F., 2007. Detection of heat adaptability using heat shock proteins and some hormones in Egyptian Bufalo calves Egypt. Egyptian Journal of Applied Science, 22: 28-53.
HABEEB, A.A.M., GAD, A.E., and El-TARABANY, A.A., 2012. Effect of hot climatic conditions with different types of housing on productive efficiency and physiological changes in buffalo calves. Isotope and Radiation Research, 44(1):109-126.
HABEEB, A.A.M., IBRAHIM, M.K.H., and YOUSF, H.M., 2000. Blood and milk contents of triiodolhyronine (T3) and cortisol in lactating buffaloes and changes in milk yield and composition as a function of lactation number and ambient temperature. Arab Journal of Nuclear Sciences and Applications, 33 (2): 313-322.
HABEEB, AAM, ATTA, M.A.A., SHARAF, A.K., and ELHANAFY, A.I.A., 2022. Impact of climatic variability of the temperature-humidity index during winter, spring and summer seasons in Egypt on the growth of the native bovine calves. Quest Journals Journal of Research in Agriculture and Animal Science, 9(12):1-11.
HALES, J. R. S. 1973. Effects of exposure to hot environments on the regional distribution of blood flow and on cardiorespiratory function in sheep. Pflügers Archiv, 344:133-148. https://doi.org/10.1007/BF00586547.
HALL, D. M., BAUMGARDNER, K. R., OBERLEY, T. D., and GISOLFI, C. V., 1999. Splanchnic tissues undergo hypoxic stress during whole body hyperthermia. American Journal of Physiology-Gastrointestinal and Liver Physiology, 276(5):1195-1203. https://doi.org/10.1152/ajpgi.1999.276.5.G1195.
HAMED, M. M., NASHWAN, M. S., and SHAHID, S., 2022. Climatic zonation of Egypt based on high-resolution dataset using image clustering technique. Progress in Earth and Planetary Science, 9(35):1-16. https://doi.org/10.1186/s40645-022-00494-3.
HOFFMANN, I. 2013. Adaptation to climate change–exploring the potential of locally adapted breeds. Animal, 7(s2): 346-362. https://doi.org/10.1017/S1751731113000815.
HOQUE, M., MONDAL, S., and ADUSUMILLI, S., 2022. Way forward for sustainable livestock sector. In Emerging issues in climate smart livestock production. Academic Press. 473-488. https://doi.org/10.1016/B978-0-12-822265-2.00016-8.
HRKOVIC-POROBIJA, A., HODZIC, A., and HADZIMUSIC, N., 2017. Functional liver stress in dairy sheep. Indian Journal of Small Ruminants, 23(2): 194-197.https://doi.org/10.5958/0973-9718.2017.00060.5.
HUSSEIN, M. A., EISSA, A. E., EL-TARABILI, R. M., ATTIA, A. S., ZAKI, M., IBRAHIM, T. B., and DESSOUKI, A. A., 2024. Impact of Climate Change on Some Seasonal Bacterial Eruptions among Cultured Marine Fishes from Egyptian Coastal Provinces. Journal of Applied Veterinary Sciences, 9(2):18-30.https://doi.org/ 10.21608/javs.2024.253653.1298.
JALALI, S. M., GHORBANPOUR, M., JALALI, M. R., RASOOLI, A., SAFAIE, P., NORVEJ, F., and DELAVARI, I., 2018. Occurrence and potential causative factors of immune-mediated hemolytic anemia in cattle and river buffaloes. In Veterinary Research Forum,9(1):7.
KAHL, A., VON SAMSON-HIMMELSTJERNA, G., KRÜCKEN, J., and GANTER, M., 2021. Chronic wasting due to liver and rumen flukes in sheep. Animals, 11(2): 549. https://doi.org/10.3390/ani11020549.
KAMAL, T.H., HABEEB, A.A.M., ABDEL-SAMEE, A.M., and MARAI, I.F.M., 1989. Milk production of heat stressed Friesian cows and its improvement in the subtropics. International symposium on the constraints and possibilities of ruminant production in the dry subtropics, Cairo, Egypt. EAAP, Publication, 38:156 – 158.
KHAMEES, A. S., RAHOMA, U. A., HASSAN, A. H., SAYAD, T., and MORSY, M., 2022. Investigation of Solar Energy Potential and PV-Outputs in Rural and Desert Areas: Case Study Egypt. In IOP Conference Series: Materials Science and Engineering. 1269(1):12006. https://doi.org/10.1088/1757-899X/1269/1/012006.
KIM, D. H., KIM, M. H., KIM, S. B., SON, J. K., LEE, J. H., JOO, S. S., and KIM, E. T., 2020. Differential dynamics of the ruminal microbiome of Jersey Cows in a heat stress environment. Animals, 10(7):1127. https://doi.org/10.3390/ani10071127.
KLOTZ, J. L., AIKEN, G. E., BUSSARD, J. R., FOOTE, A. P., HARMON, D. L., GOFF, B. M., and STRICKLAND, J. R., 2016. Vasoactivity and vasoconstriction changes in cattle related to time off toxic endophyte-infected tall fescue. Toxins, 8(10): 271. https://doi.org/10.3390/toxins8100271.
KOCH, F., THOM, U., ALBRECHT, E., WEIKARD, R., NOLTE, W., KUHLA, B., and KUEHN, C., 2019. Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine. Proceedings of the National Academy of Sciences, 116(21):10333-10338. https://doi.org/10.1073/pnas.182013011.
KRISHNAN, G., SILPA, M. V., and SEJIAN, V., 2023. Environmental Physiology and Thermoregulation in Farm Animals. In Textbook of Veterinary Physiology , 723-749. https://doi.org/10.1007/978-981-19-9410-4_28.
LACETERA, N., SEGNALINI, M., BERNABUCCI, U., RONCHI, B., VITALI, A., TRAN, A., and NARDONE, A., 2013. Climate induced effects on livestock population and productivity in the Mediterranean area. Regional Assessment of Climate Change in the Mediterranean: Agriculture, Forests and Ecosystem Services and People, 51:135-156. https://doi.org/10.1007/978-94-007-5772-17.
LAMBERTZ, C., SANKER, C., and GAULY, M., 2014. Climatic effects on milk production traits and somatic cell score in lactating Holstein-Friesian cows in different housing systems. Journal of dairy science, 97(1): 319-329. https://doi.org/10.3168/jds.2013-7217.
LIM, C. L. 2020. Fundamental concepts of human thermoregulation and adaptation to heat: a review in the context of global warming. International journal of environmental research and public health, 17(21):7795. https://doi.org/10.3390/ijerph17217795.
LIU, P., YU, S., CUI, Y., HE, J., ZHANG, Q., LIU, J., and LI, H., 2018. Regulation by HSP70/90 in the different tissues and testis development of male cattle, 393371. https://doi.org/10.1101/393371.
LYKKESFELDT, J., and SVENDSEN, O., 2007. Oxidants and antioxidants in disease: oxidative stress in farm animals. The veterinary journal, 173(3):502-511. https://doi.org/10.1016/j.tvjl.2006.06.005.
MANCERA, E. D. L. F., CARRASCO, A. C., and ELVIRA, S. M., 2024. Etiological Agent, Pathogenesis, Diagnosis, Treatment, Measures for Prevention and Control of Caseous Lymphadenitis Disease in the Small Ruminants with Special Reference to Sheep. Journal of Biosciences and Medicines, 12(5):154-170. https://doi.org/10.4236/jbm.2024.125012.
MARINO, R., ATZORI, A. S., D'ANDREA, M., IOVANE, G., TRABALZA-MARINUCCI, M., and RINALDI, L., 2016. Climate change: Production performance, health issues, greenhouse gas emissions and mitigation strategies in sheep and goat farming. Small Ruminant Research, 135:50-59. https://doi.org/10.1016/j.smallrumres.2015.12.012.
MATHEW, N. 2002. Stress related physiological changes in cattle brought for slaughter (Doctoral dissertation, Department of Physiology, College of Veterinary and Animal Sciences, Mannuthy).
MAURYA, V. P., SEJIAN, V., GUPTA, M., DANGI, S. S., KUSHWAHA, A., SINGH, G., and SARKAR, M., 2015. Adaptive mechanisms of livestock to changing climate. Climate Change Impact on Livestock: Adaptation and Mitigation, 123-138. https://doi.org/10.1007/978-81-322-2265-19.
MIRZAD, A. N., TADA, T., ANO, H., KOBAYASHI, I., YAMAUCHI, T., and KATAMOTO, H., 2018. Seasonal changes in serum oxidative stress biomarkers in dairy and beef cows in a daytime grazing system. Journal of Veterinary Medical Science, 80(1):20-27. https://doi.org/10.1292/jvms.17-0321.
MOHAMMED, A. N. 2023. Potential influence of climate change on the occurrence and distribution of vector-borne diseases among animal populations. Egyptian Journal of Veterinary Sciences, 54(3):395-402. https://doi.org/10.21608/ejvs.2023.173626.1409.
MOSS, A. R., JOUANY, J. P., and NEWBOLD, J., 2000. Methane production by ruminants: its contribution to global warming. In Annales de zootechnie, 49(3):231-253. https://doi.org/10.1051/animres:2000119.
MOTA-ROJAS, D., TITTO, C. G., ORIHUELA, A., MARTÍNEZ-BURNES, J., GÓMEZ-PRADO, J., TORRES-BERNAL, F., and WANG, D., 2021. Physiological and behavioral mechanisms of thermoregulation in mammals. Animals, 11(6): 1733. https://doi.org/10.3390/ani11061733.
NASHWAN, M. S., and SHAHID, S., 2019. Symmetrical uncertainty and random forest for the evaluation of gridded precipitation and temperature data. Atmospheric Research, 230:104632. https://doi.org/10.1016/j.atmosres.2019.104632.
NIJM, J., KRISTENSON, M., OLSSON, A. G., and JONASSON, L., 2007. Impaired cortisol response to acute stressors in patients with coronary disease. Implications for inflammatory activity. Journal of internal medicine, 262(3):375-384.https://doi.org/10.1111/j.1365-2796.2007.01817.x.
O’NEILL, H. A. 2019. A review on the involvement of catecholamines in animal behaviour. South African Journal of Animal Science, 49(1):1-8.
OKELLO, W. O., MACLEOD, E. T., MUHANGUZI, D., WAISWA, C., and WELBURN, S. C., 2021. Controlling tsetse flies and ticks using insecticide treatment of cattle in Tororo District Uganda: cost benefit analysis. Frontiers in Veterinary Science, 8, 616865. https://doi.org/10.3389/fvets.2021.616865.
OMOTOSHO, O. O., FOWOWE, O., ABIOLA, J. O., OYAGBEMI, A. A., and OMOBOWALE, T. O., 2024. High environmental temperature induces oxidative stress, reduced Sow Productivity and increased piglet mortality. Journal of Applied Veterinary Sciences, 9(2):42-54.https://doi.org/10.21608/javs.2024.255494.1300.
OMRAN, E. S. E., GABER, I. M., and ELKASHEF, T. M., 2023. Climate Considerations in the Planning and Sustainability of Egyptian Cities. In Egypt’s Strategy to Meet the Sustainable Development Goals and Agenda 2030: Researchers' Contributions: SDGs Viewed Through the Lens of Egypt’s Strategy and Researchers' Views, 207-238. https://doi.org/10.1007/978-3-031-10676-7_13.
OSMAN, A. M. K., OLESAMBU, E., and BALFROID, C., 2018. Pastoralism in Africa's drylands: reducing risks, addressing vulnerability and enhancing resilience.
PONS, H., FERREBUZ, A., QUIROZ, Y., ROMERO-VASQUEZ, F., PARRA, G., JOHNSON, R. J., and RODRIGUEZ-ITURBE, B., 2013. Immune reactivity to heat shock protein 70 expressed in the kidney is cause of salt-sensitive hypertension. American Journal of Physiology-Renal Physiology, 304(3):289-299. https://doi.org/10.1152/ajprenal.00517.2012.
RAHAL, A., AHMAD, A. H., PRAKASH, A., MANDIL, R., and KUMAR, A. T., 2014. Environmental attributes to respiratory diseases of small ruminants. Veterinary medicine international,1:853627. https://doi.org/10.1155/2014/853627.
RAMÓN, M., DÍAZ, C., PÉREZ-GUZMAN, M. D., and CARABAÑO, M. J., 2016. Effect of exposure to adverse climatic conditions on production in Manchega dairy sheep. Journal of Dairy Science, 99(7): 5764-5779. https://doi.org/10.3168/jds.2016-10909.
RANA, M. S., HASHEM, M. A., SAKIB, M. N., and KUMAR, A., 2014. Effect of heat stress on blood parameters in indigenous sheep. Journal of the Bangladesh Agricultural University, 12(1):91-94. https://doi.org/10.22004/ag.econ.209902.
RASHAMOL, V. P., SEJIAN, V., BAGATH, M., KRISHNAN, G., BEENA, V., and BHATTA, R., 2019. Effect of heat stress on the quantitative expression patterns of different cytokine genes in Malabari goats. International journal of biometeorology, 63:1005-1013. https://doi.org/10.1007/s00484-019-01713-1.
REBEZ, E. B., SEJIAN, V., SILPA, M. V., and DUNSHEA, F. R., 2023. Heat stress and histopathological changes of vital organs: A novel approach to assess climate resilience in farm animals. Sustainability, 15(2):1242. https://doi.org/10.3390/su15021242.
RUIZ-ORTEGA, M., GARCÍA Y GONZÁLEZ, E. C., HERNÁNDEZ-RUIZ, P. E., PINEDA-BURGOS, B. C., SANDOVAL-TORRES, M. A., VELÁZQUEZ-MORALES, J. V., and PONCE-COVARRUBIAS, J. L., 2022. Thermoregulatory response of blackbelly adult ewes and female lambs during the summer under tropical conditions in Southern Mexico. Animals, 12(14): 1860. https://doi.org/10.3390/ani12141860.
SEJIAN, V., BHATTA, R., GAUGHAN, J. B., DUNSHEA, F. R., and LACETERA, N., 2018. Adaptation of animals to heat stress. 12(2):431-444. https://doi.org/10.1017/S1751731118001945.
SEJIAN, V., BHATTA, R., GAUGHAN, J. B., DUNSHEA, F. R., and LACETERA, N., 2018. Adaptation of animals to heat stress. Animal, 12(2):431-s444. https://doi.org/10.1017/S1751731118001945.
SEJIAN, V., HYDER, I., MAURYA, V. P., BAGATH, M., KRISHNAN, G., ALEENA, J., and NAQVI, S. M. K., 2017. Adaptive mechanisms of sheep to climate change. Sheep Production Adapting to Climate Change, 117-147. https://doi.org/10.1007/978-981-10-4714-55.
SESAY, A. R. 2023. Effect of heat stress on dairy cow production, reproduction, health, and potential mitigation strategies. J. Appl. Adv. Res, 8:13-25. https://doi.org/10.21839/jaar.2023.v8.8371.
SHARMA, A. K., and KATARIA, N., 2011. Effect of extreme hot climate on liver and serum enzymes in Marwari goats. Indian Journal of Animal Sciences, 81(3): 293.
SHEPHARD, R. W., and MALONEY, S. K., 2023. A review of thermal stress in cattle. Australian Veterinary Journal, 101(11):417-429. https://doi.org/10.1111/avj.13275.
SHOKRY, A. S., MAHMOUD, M. A., ABDELHAMID, M. F., MOHAMMED, O. H., ABDELZAHER, S. S., ABOELWAL, H. R., and ABOELWAFA, H. R., 2024. Assessment of Histological Alterations Induced in The Liver and Kidney Tissues of Adult Mice Exposed to Heat Stress and Their Association with Global Warming. Applied research in sciences and humanities, 1(1):36-52. https://doi.org/10.21608/aash.2024.374456.
SKIBIEL, A. L., PEÑAGARICANO, F., AMORÍN, R., AHMED, B. M., DAHL, G. E., and LAPORTA, J., 2018. In utero heat stress alters the offspring epigenome. Scientific reports, 8(1):14609. https://doi.org/10.1038/s41598-018-32975-1.
STRAPPINI, A. C., METZ, J. H. M., GALLO, C. B., and KEMP, B., 2009. Origin and assessment of bruises in beef cattle at slaughter. Animal, 3(5):728-736. https://doi.org/10.1017/S1751731109004091.
SULA, M. J. M., WINSLOW, C. M., BOILEAU, M. J., BARKER, L. D., and PANCIERA, R. J., 2012. Heat-related injury in lambs. Journal of Veterinary Diagnostic Investigation, 24,4, 772-776. https://doi.org/10.1177/1040638712445.
SWANSON, R.M., TAIT, R.G., GALLES, B.M., DUFFY, E.M., SCHMIDT, T.B., PETERSEN, J.L., and YATES, D.T., 2020. Heat stress-induced deficits in growth, metabolic efficiency, and cardiovascular function coincided with chronic systemic inflammation and hypercatecholaminemia in ractopamine-supplemented feedlot lambs. Journal of animal science, 98:6. https://doi.org/10.1093/jas/skaa168.
SZULC, J., OKRASA, M., DYBKA-STĘPIEŃ, K., SULYOK, M., NOWAK, A., OTLEWSKA, A., and MAJCHRZYCKA, K., 2020. Assessment of microbiological indoor air quality in cattle breeding farms. Aerosol and Air Quality Research, 20(6):1353-1373. https://doi.org/10.4209/aaqr.2019.12.0641.
THORNTON, P., NELSON, G., MAYBERRY, D., and HERRERO, M., 2022. Impacts of heat stress on global cattle production during the 21st century: a modelling study. The Lancet Planetary Health, 6(3):192-201.
THORNTON, P., NELSON, G., MAYBERRY, D., and HERRERO, M., 2022. Impacts of heat stress on global cattle production during the 21st century: a modelling study. The Lancet Planetary Health, 6(3):192-201.
THORNTON, T. F., PURI, R. K., BHAGWAT, S., and HOWARD, P., 2019. Human adaptation to biodiversity change: An adaptation process approach applied to a case study from southern India. Ambio, 48(12):1431-1446. https://doi.org/10.1007/s13280-019-01225-7.
VAN DIJK, J., SARGISON, N. D., KENYON, F., and SKUCE, P. J., 2010. Climate change and infectious disease: helminthological challenges to farmed ruminants in temperate regions. , 4(3): 377-392. https://doi.org/10.1017/S1751731109990991.
WANG, L., XUE, B., WANG, K., LI, S., and LI, Z., 2011. Effect of heat stress on endotoxin flux across mesenteric‐drained and portal‐drained viscera of dairy goat. Journal of animal physiology and animal nutrition, 95(4):468-477. https://doi.org/10.1111/j.1439-0396.2010.01074.x.
WOLFENSON, D., ROTH, Z., and MEIDAN, R., 2000. Impaired reproduction in heat-stressed cattle: basic and applied aspects. Animal reproduction science, 60:535-547.https://doi.org/10.1016/S0378-4320(00)00102-0.
WU, X., LIU, J., LI, C., and YIN, J., 2020. Impact of climate change on dysentery: Scientific evidences, uncertainty, modeling and projections. Science of The Total Environment, 714:136702.https://doi.org/10.1016/j.scitotenv.2020.136702
XIAO, R., and XU, X. S., 2021. Temperature sensation: from molecular thermosensors to neural circuits and coding principles. Annual review of physiology, 83(1):205-230. https://doi.org/10.1146/annurev-physiol-031220-095215.
YADAV, B., YADAV, P., KUMAR, M., VASVANI, S., ANAND, M., KUMAR, A., and MADAN, A. K., 2022. Effect of heat stress on Rumen microbial diversity and fermentation pattern in Buffalo. Advanced Gut and Microbiome Research, 1:1248398. https://doi.org/10.1155/2022/1248398.
YU, J., YIN, P., LIU, F., CHENG, G., GUO, K., LU, A., and XU, J. 2010. Effect of heat stress on the porcine small intestine: a morphological and gene expression study. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 156(1):119-128. https://doi.org/10.1016/j.cbpa.2010.01.008.
ZHONG, S., DING, Y., WANG, Y., ZHOU, G., GUO, H., CHEN, Y., and YANG, Y., 2019. Temperature and humidity index (THI)-induced rumen bacterial community changes in goats. Applied Microbiology and Biotechnology, 103:3193-3203. https://doi.org/10.1007/s00253-019-09673-7.
ZITTIS, G., ALMAZROUI, M., ALPERT, P., CIAIS, P., CRAMER, W., DAHDAL, Y., and LELIEVELD, J., 2022. Climate change and weather extremes in the Eastern Mediterranean and Middle East. Reviews of geophysics, 60(3):762. https://doi.org/10.1029/2021RG000762.