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ABSTRACT 
 

Hepatic fibrogenesis is considered an epidemic health problem since it can lead to 

several insults that can be fatal. Ertugliflozin (Ertu), an inhibitor of the sodium-

glucose cotransporter-2 (SGLT2), is one of the most recent anti-diabetic 

medications used to treat type 2 diabetes mellitus (T2DM). In a variety of human 

and animal models, SGLT2 inhibitors demonstrated anti-inflammatory, anti-

fibrotic, and antioxidant qualities. Consequently, we designed the present 

investigation to clarify the preventive role of ertugliflozin in male rat liver fibrosis 

brought on by thioacetamide (TAA) as well as the anticipated mechanisms.   24 

rats were divided into four groups: “a control group, “TAA group” (received 

intraperitoneal injections of 100 mg/kg b.wt. twice a week for six weeks), and 

"TAA + Ertu" groups (received oral Ertu at doses of 5 and 10 mg/kg b.wt. for four 

weeks in addition to TAA injections). Ertugliflozin promoted hepatic antioxidant 

effects by considerably increasing HO-1, Nrf2 protein and mRNA expression, 

GSH and SOD levels, and lowering hepatic MDA content. It also greatly reduced 

TAA-induced changes in liver function measures. Additionally, ertugliflozin 

suppressed the elevated levels of “PI3K, TGF-β1, α SMA, and caspase3” and 

enhanced the hepatic anti-inflammatory state by declining the pro-inflammatory 

cytokines “TNF-α, IL-6, and TLR4” levels.  Histological examination showed that 

ertugliflozin significantly inhibited the liver alterations caused by TAA. Our 

findings imply that ertugliflozin’s hepatoprophylactic effects may be mediated by 

improving antioxidant capacities and reducing inflammatory signals by modifying 

the Nrf2/HO-1 and TLR4/TGF-β1 pathways. 
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INTRODUCTION 

Hepatic fibrogenesis is regarded as a serious 

public health issue because of high rates of morbidity 

and death (Kim et al., 2024). Recurrent liver injury, 

which can be brought on by viral infections, medication 

toxicity, alcoholic and nonalcoholic steatohepatitis, can 

result in hepatic fibrogenesis (Ramadan et al., 2018). 

Liver fibrosis may develop into cirrhosis, liver cancer, 

or even liver failure if left untreated (Lee et al., 2019; 

Mohammed et al., 2023). External stimuli that activate 

hepatic stellate cells (HSCs) cause them to secrete 

many pro-inflammatory cytokines and deposit 

extracellular matrix (ECM) proteins excessively (Abd 

El-Rahman and Fayed 2019; Elbaset et al., 2023). 

 

The defense mechanisms of the cells include a 

number of coordinated antioxidant enzymes that 

eliminate excess reactive oxygen species (ROS) 

(Bhattacharyya et al., 2014). Cellular antioxidant 

status is largely controlled by “nuclear factor erythroid 

2-related factor 2 (Nrf2)” that provides defense against 

excessive ROS and modulates a number of 

cytodefensive proteins (Satta et al., 2017). A crucial 

transcription factor known as Nrf2 sustains cellular 

homeostasis by increasing the expression of 

antioxidant genes, which in turn inhibits the generation 

of ROS and the inflammation response (Alsharif et al., 

2022). Normally, Kelch-like ECH-associated protein-1 

(Keap1) keeps Nrf2 in the cytoplasm. Upon entering 
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the nucleus after oxidative stress, Nrf2 attaches itself to 

ARE, antioxidant response element, and initiates 

multiple antioxidants' transcription (Raslan et al., 

2021). Prior research has demonstrated that SGLT2 

inhibitors enhance the Nrf2/HO-1 pathway (Tsai et al., 

2021). Thus, we hypothesized that ertugliflozin might 

prevent experimental liver fibrosis by activating the 

“Nrf2 pathway”. 

 

Furthermore, the class of receptors known as 

toll-like receptors (TLRs) is distinguished by its 

capacity to identify patterns and is capable of precisely 

detecting infections and chemicals generated from 

bacteria (Hassan et al., 2025). A typical example of a 

TLR, TLR4 modulates both innate and adaptive 

immune responses and is crucial for triggering 

inflammation (Mukherjee et al., 2016). The 

inflammatory response may be moderated by TLR4, 

which triggers the NF-κB pathway and other 

downstream inflammatory components (Caso et al., 

2007). Recent investigations explored that 

hyperglycemia increases the expression of TLR4 

(Wang et al., 2020). Consequently, we postulated that 

ertugliflozin could inhibit the TLR4 pathway and 

thereby prevent experimental liver fibrosis. 

 

Sodium glucose co-transporter 2 (SGLT2) 

inhibitors are more recent hypoglycemic treatments 

that reduce blood sugar levels by preventing the 

kidneys from reabsorbing glucose (Vivian 2014). The 

risk of hypoglycemia is minimal because this class of 

hypoglycemic medications operates entirely 

independently of the insulin hormone (Chao 2014). 

SGLT2 inhibitors are attractive anti-inflammatory 

drugs because they can directly alter inflammatory 

signaling pathways or indirectly improve metabolism 

and lower stress levels (Elrakaybi et al., 2022). The 

novel oral antidiabetic drug ertugliflozin has been 

shown to regulate changes linked to metabolism, lower 

the risk of heart failure, and slow the advancement of 

renal disorders (Croteau et al., 2021).  

 

Instead of stimulating insulin production, 

ertugliflozin blocks renal reabsorption of filtered 

glucose by suppressing SGLT2, which raises urine 

glucose excretion (Derosa and Maffioli 2018). 

Therefore, unlike medications that encourage the 

release of insulin, ertugliflozin does not result in 

hypoglycemia (Frias 2019). However, it is uncertain 

how ertugliflozin affects liver fibrosis. Therefore, our 

study's objective was to clarify the protective effects of 

Erut medication against TAA-induced hepatic 

fibrogenesis in a rat model and explore its mechanism 

related to Nrf2/HO-1 activation and TLR4 signaling 

pathway suppression. In clinical settings, because fatty 

liver and fibrosis are common in diabetes patients, the 

medication has a dual function. 
 

 

MATERIALS AND METHODS 
 

Experimental animals  
We acquired adult male Wistar rats from the 

"Animal House Colony at the “National Research 

Centre” “(NRC, Egypt)" that were “six to eight weeks 

old and weighed 180 to 220 g.” The animals were 

housed in standard laboratory cages (plastic cages with 

metal covers) with 6 animals per cage. They were 

provided with ad libitum access to a standard rodent 

chow (food pellets) and tap water. The animals were 

maintained under a 12-hour light/12-hour dark cycle 

with controlled temperature (22 ± 2°C) and humidity 

(55 ± 10%). The cages were cleaned regularly to 

maintain a hygienic environment. "National and 

international ethical standards" were adhered to when 

caring for every animal. The Cairo University 

Institutional Animal Care and Use Committee" (Vet 

CU13102024978) has permitted all experimental 

protocols.   

 

Drug and Chemical 
            Thioacetamide was acquired from “Sigma-

Aldrich in the United States”. Germany's Merck was the 

source of ertugliflozin (STEGLATROTM). 

 

Research design 
            Twenty-four rats were randomly assigned (six 

rats each to one of four groups) after a week of 

acclimatization: The control group (Group 1 rats) was 

given intraperitoneal (IP) saline twice a week for six 

weeks. Based on earlier research in our lab, our group 

determined the TAA dosage that can cause liver fibrosis 

(Elbaset et al., 2023; Elbaset et al., 2024; Hassan et 

al., 2025). Group 2 rats (also known as the "TAA 

group") received intraperitoneal injections of TAA (100 

mg/kg b.wt.) twice a week for six weeks in order to 

induce hepatic fibrogenesis (Abd El-Rahman and 

Fayed 2019). Groups three and four (the treatment 

groups) were given two oral Erut dosages daily for four 

weeks at doses of 5 and 10 mg/kg b.wt. beginning two 

weeks after the TAA injections and continuing 

concurrently with TAA for 4 weeks (Pang et al., 2023). 

 

Preparation of blood and liver tissues 
            Blood was drawn from the tail vein twenty-four 

hours following the last injection while under 

anesthesia using intraperitoneal injections of ketamine 

(50 mg/kg) and xylazine (25 mg/kg) diluted in saline. 

Decapitation was performed after euthanasia in a CO₂ 

euthanasia chamber. Serum samples were frozen at -

20°C for the biochemical assay. Immediately after 

removal, the livers were cleansed in ice-cold saline and 

allowed to dry. A section of the liver was stored for 

“molecular and biochemical analyses at -80°C.” For 

immunohistochemistry and histology, a separate 
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portion was preserved in "10% buffered neutral 

formalin". 

 

Assessment of liver injury indicators 
            The liver enzymes "alanine aminotransferase 

(ALT) and aspartate aminotransferase (AST)" and 

albumin were identified by enzymatic colorimetric 

methods using kits from “the Bio-diagnostic Company, 

Dokki, Giza, Egypt”, "Catalog No AL 10 31 (45), AS 

10 61 (45), and AB 10 10" respectively.  

 

Evaluation of oxidation stress  
            As instructed by the manufacturer, 

"Bio-diagnostic Company, Dokki, Giza, Egypt" kits 

were used to measure the levels of "reduced glutathione 

(GSH), superoxide dismutase (SOD), and 

malondialdehyde (MDA)" in hepatic homogenate 

(Cat# GR2511, SD2521, MD2529). 

 
 

Liver inflammation and pro-fibrosis 

biomarkers 

“Toll-like receptor 4 (TLR4), tumor necrosis factor 

(TNF-α), interleukin-6 (IL-6), transforming growth 

factor-beta (TGF-β1), and phosphotidylinositol-3-

kinase (PI3K)” were assayed in hepatic homogenate 

using specific "Rat ELISA kits (SunLong Biotech Co., 

LTD, China; Catalogs Number: SL0699Ra, SL0722Ra, 

SL0411Ra, SL0705Ra, and SL0571Ra respectively)" 

as directed by the manufacturer. 

  

ELISA measurement of Nrf2 level 
The ELISA method was used to test the Nrf2 level in 

liver tissues "(Cat# SL0985Ra)" using a "Sunlong 

Biotech Co., Ltd., China kit" in compliance with the 

manufacturer's instructions. 

  

Evaluation of the expression of the "Nrf2 and 

HO-1" genes in the liver 
Amplification sizes, primer sequences, target genes, 

and cycle parameters for SYBR green rt-PCR are listed 

in Table 1 outlined by Yuan et al., (2006). 
 

Table 1: Amplification sizes, primer sequences, target genes, and cycle parameters for SYBR 

green rt-PCR: 
 

“Gene”   “Sequence (5′-3′)” 

Nrf2 (Yamashita et al., 2014) 
“F” “CACATCCAGACAGACACCAGT” 

“R” “CTACAAATGGGAATGTCTCTGC” 

HO-1 (Chu et al., 2020) 
“F” “GGCTTTAAGCTGGTGATGGC” 

“R” “GGGTTCTGCTTGTTTCGCTC” 

Rat ß. Actin (Banni et al., 2010) 
“F” “TCCTCCTGAGCGCAAGTACTCT” 

“R” “GCTCAGTAACAGTCCGCCTAGAA” 
 

 
 

Liver histology  
            Liver tissues were collected, cleaned, dried, 

preserved in 10% neutral buffered formalin. 

Haematoxylin and eosin staining was subsequently 

applied to the 5-micron-thick slices for histological 

examination (Bancroft and Gamble 2008). Masson's 

trichrome stain (MTC) was used to further stain liver 

slices in order to evaluate hepatic fibroplasia. A 

Japanese light microscope, the Olympus BX50, was 

used to examine all stained sections.  
 

Scores for histopathological lesions  
            The liver's histological alterations were 

identified and categorized as following: mild (1), 

moderate (2), severe (3), and no change (0). The 

grading was done by percentage, with mild changes 

being those that were less than 30%, moderate changes 

being those that were between 30% and 50%, and 

severe changes being those that were greater than 50% 

(El-Maksoud et al., 2020). “Image J 1.52 p software” 

“(Wayne Rasband, National Institutes of Health 

(U.S.A.))” was used to assess and quantify liver 

fibrosis as an area percentage (Baraka et al., 2023). 

High-power (x 400) microscopes in ten microscopical 

regions were analyzed. 
 

Immuno-histochemical evaluation 
            Immunohistochemistry was performed using 

the procedures outlined by Shamseldean et al., (2022). 

Graded alcohol was used to rehydrate liver tissue 

sections after they had been deparaffinized in xylene. 

In order to inhibit endogenous peroxidase activity, 

Hydrogen Peroxide Block (Thermo Scientific, USA) 

was introduced. Tissue slices were pretreated with 10 

mM citrate and then heated in a microwave oven for 10 

minutes in order to retrieve the antigen.  
 

Caspases-3 and α-SMA immunostaining 

evaluation in hepatic tissue  
            According to Deabes et al., (2025), the 

immune-reactivity of “caspase-3 and α-SMA” was 

evaluated in five liver sections. A high-power (x400) 

microscope was used to analyze the immune-reactivity 

of each segment in 10 microscopical regions. The 

percentage of positively stained cells (%) was 

estimated by color deconvolution image J 1.52 p 



 Ertugliflozin, a SGLT-2 Inhibitor …….. 

37 
 

software (Wayne Rasband, National Institutes of 

Health (U.S.A.)). 
 

Statistics of the experiment 
            Statistics were done according to Elbaset et al., 

(2023) “Using the Shapiro test, values were guaranteed 

for normality. Means ± S.E. are used to represent the 

results. The Tukey–Kramer Post hoc test was 

performed after one-way analysis of variance to 

process the data. The figures were created and the 

statistical analysis was carried out using GraphPad 

Prism program (version 10, California, USA). The 

significance level was set to p < 0.05 for all statistical 

tests”. 

 

RESULTS 
 

Ertugliflozin's efficacy on hepatic function indicators in rats given TAA 
            TAA significantly impairs liver function, as seen by elevation in ALT and AST of 568.18% and 527.08%, 

respectively, and a decrease in albumin of 56.51% in comparison with the control group. Ertu (5 mg/kg) 

considerably improved these outcomes when compared to the TAA group, increasing albumin by 72.96% and 

decreasing "ALT and AST" by 65.15% and 62.26%, respectively. When compared to the TAA group, the higher 

dosage (10 mg/kg) resulted in superior results and brought these parameters closer to normal control levels, 

boosting albumin by 117.47% and decreasing "ALT and AST" by 76.06% and 74.57%, respectively (Fig. 1A,B,C). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Assessment of Ertugliflozin impact on hepatic function: AST, ALT, albumin in TAA intoxicated rats. (A) 

“Serum ALT” (U/L). (B) “Serum AST” (U/L). (C) “Serum albumin” (mg/dL). Data are displayed as mean ± SEM 

of six rats, with p-values displayed on the bars. TAA: Thioacetamide; Ertu: Ertugliflozin. 

 

Ertugliflozin's efficacy on oxidation stress indicators in rats given TAA 
            TAA caused significant oxidative stress, increasing MDA by 672.02% and lowering GSH and SOD by 

85.35% and 73.88%, respectively, in comparison to the control. These indicators were improved in a dose-

dependent manner following Erut therapy. The dose of 5 mg/kg raised "GSH and SOD" in comparison to the TAA 

group by 442.33% and 220.39%, respectively, and decreased "MDA" by 71.77%. The advantages of the 10 mg/kg 

dose were more pronounced than in the TAA group, with "MDA" being reduced by 76.35% and "GSH and SOD" 

being raised by 595.76% and 342.82%, respectively, almost normalizing these levels (Fig 2 A, B, C). 
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Fig.2: Ertugliflozin impact on oxidative stress markers: GSH, MDA, SOD in TAA-intoxicated rats. (A) “GSH (nmol/mg 

protein)”. (B) “MDA (nmol/ml)”. (C) “SOD (U/mg protein) activity”. The data are displayed as mean ± SEM of six rats, with 

p-values displayed on the bars. TAA: Thioacetamide; Ertu: Ertugliflozin. 
 

Ertugliflozin's efficacy on inflammatory indicators in rats given TAA 
            Comparing to the control, TAA markedly amplified inflammation, raising TLR4, IL-6, and TNF-α level by 

611.23%, 402.71%, and 365.36%, respectively. These inflammatory indicators were lowered in a dose-dependent 

manner by Ertu therapy. Comparing the 5 mg/kg dose of Ertu to the TAA group, these values decreased by 51.91%, 

62.48%, and 54.99%, respectively. The 10 mg/kg dose, on the other hand, showed more noticeable effects, reducing 

them by 56.65%, 69.58% (Fig.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3:  Ertugliflozin effect on inflammatory mediators: TLR4, IL-6, and TNF-α level in TAA intoxicated rats. (A) “TLR4 

(ng/mg protein)”. (B) “IL-6 (pg/mg protein)”. (C) “TNF-α (pg/mg protein)”. The data are displayed as mean ± SEM of six 

rats, with p-values displayed on the bars. TAA: Thioacetamide; Ertu: Ertugliflozin. 
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Ertugliflozin's efficacy on the antioxidant pathway in rats given TAA 
            TAA significantly reduced HO-1 expression and Nrf2 (protein and gene expression) by 80.67%, 49.91%, 

and 69.38%, respectively, when compared to control. Ertu's treatment caused a dose-dependent increase in the 

antioxidant pathway. Efficacy of the 5 mg/kg dose was more noticeable than those of the TAA group; Nrf2 (protein 

and gene expression) and HO-1 expression increased by 354.63%, 160.54%, and 183.15%, respectively, while the 

10 mg/kg dose had more pronounced effects, increasing them to normal values by 468.29%, 234.39%, and 

241.42%, respectively (Fig. 4 A, B, C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4:  Ertugliflozin’s effect on Nrf2 and HO-1gene expression and level in TAA intoxicated rats. (A) “Nrf2 (ng/mg protein)”. 

(B) “Nrf2 gene expression”. (C) “HO-1 gene expression”. The data are displayed as mean ± SEM of six rats, with p-values 

displayed on the bars. TAA: Thioacetamide; Ertu: Ertugliflozin. 

 

Ertugliflozin's efficacy on PI3K and TGF-β1 levels in rats given TAA 
            TAA injections significantly raised PI3K and TGF-β1 levels by 517.13% and 502.75%, respectively, in 

comparison to control. These markers decreased in a dose-dependent way with Ertu therapy. These indices were 

reduced by the 5 mg/kg dose in comparison to the TAA group by 74.82% and 75.47%, respectively; however, the 

effects of the 10 mg/kg dose were more noticeable, by lowering them by 78.41% and 76.23%, respectively (Figs 

5 A, B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5: Ertugliflozin effect on PI3K and TGF-β1 levels in TAA intoxicated rats. (A) “PI3K (pg/mg protein)”. (B) “TGF-β1 

(pg/mg protein)”. The data are displayed as mean ± SEM of six rats, with p-values displayed on the bars. TAA: Thioacetamide; 

Ertu: Ertugliflozin. 
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Results of histopathology 
            The liver of the control group showed normal structure (Fig. 6 a). In addition to portal fibrosis, bile duct 

hyperplasia, and the development of newly formed bile ductules (Fig. 6c), the TAA group displayed bridging 

fibroplasia and pseudolobulation (Fig. 6b), vacuolar degeneration of certain hepatocytes, karyocytomegaly of 

others, and mitotic figures (Fig. 6d). In the group treated with Ertu 5 mg, the lesions were less than those of control 

positive and hepatocytes displayed minor vacuolar degeneration and bridging and portal fibrosis were moderate 

(Figs. 6e & f). The group that received Ertu 10 mg showed a notable decrease in the aforementioned lesions, with 

fibrous tissue between hepatocytes being sparse and the hepatic architecture normal (Fig. 6 g & h). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Photomicrograph, liver rat. (a) Control group showing normal histological structure of hepatocytes (arrow). (b) TAA 

group showing bridging fibrosis and pseudolobulation of liver parenchyma (arrow). (c) Portal fibrosis (long arrow) and newly 

developed bile ductules (short arrow) are visible in the TAA group. (d) TAA group showing vacuolation of hepatocytes (short 

arrow), karyocytomegaly (long arrow) and mitotic figures (arrowhead). (e) Ertu 5 mg treated group showing moderate bridging 

fibrosis (arrow). (f) Ertu 5 mg group showing moderate portal fibrosis (arrow). (g) There is scanty fibrosis between the 

hepatocytes and normal hepatocytes in the Ertu 10 mg group (arrow). (h) Ertu 10 mg group showing mild portal fibrosis 

(arrow). (H&EX100). 

 

            Hepatic lesions were identified and ranked according to their severity, as shown in table (2). 
 

Table (2): Changes in the liver histopathologically: 
 

Lesions 
Control TAA Ertu 5 mg Ertu 10 mg 

“Bridging fibroplasia”  0 3 2 1 

“Pseudolobulation of hepatic parenchyma”  0 3 2 1 

“Vacuolar degeneration of hepatocytes” 0 3 1 0 

“karyocytomegaly of hepatocytes” 0 3 1 0 

“Mitotic figures”  0 2 1 0 

“Portal fibrosis”  0 3 2 1 

“Hyperplasia of bile ducts”  0 3 1 0 

“Formation of newly-formed bile ductules” 0 3 1 0 
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Histochemical findings 
            For fibroplasia, slices stained with MTC were 

analyzed. The area percentage of collagen deposition 

was depicted in Fig. 7e, while Fig. 7a demonstrated 

weakly stained collagen in the control group. TAA 

group revealed portal and bridging fibrosis (Fig. 7 b), 

The collagen deposition in the Ertu 5 mg treated group 

decreased noticeably (Fig. 7 c), whereas the group 

treated with Ertu 10 mg showed a considerable drop in 

collagen deposition (Fig. 7 d). 

 

Fig. 7: Photomicrograph, MTC stained rat liver. (a)     

Weakly stained collagen is seen in the control group. 

(b) The TAA group exhibits bridging and portal 

fibrosis. (c) The group that received Ertu 5 mg showed 

less collagen fiber deposition. (d) The group treated 

with Ertu 10 mg had minimal collagen fiber deposition 

(MTC X100). (e) Area percentage of collagen 

deposition in each group (mean ±SE was used to 

express the data, with different letters denoting 

significant differences at p < 0.05). 

 
 

Immuno-histochemical findings of caspase-3 

and α-SMA  
            Fig. 8e showed the immuno-expression of 

caspase-3 and α-SMA area percentage in liver tissue. 

Caspases-3 immunostaining revealed that the control 

group had few immune-reactive cells (Fig. 8a).  

Hepatocyte immune-expression was high in the TAA 

group (Fig. 8b). The hepatocytes in the Ertu 5 mg and 

Ertu 10 mg treatment groups showed a reduced positive 

immunological response (Figs. 8 c & d). Regarding α-

SMA, the control group only showed expression in the 

smooth muscle wall of blood vessels (Fig. 8a), whereas 

the TAA group showed strong expression in the 

vascular walls and stellate cells of interlobular fibrous 

septa (Fig. 8b). The Ertu 5 mg and Ertu 10 mg treated 

groups showed significantly lower expression (Figs. 8c 

& d). 

 

Fig.8: Immuno-staining of caspase-3 and α-SMA, liver 

rat. (a) control group showed Immuno-staining of 

caspase-3 with few immune-reactive cells, α-SMA in 

control group showed expression in smooth muscle 

wall of blood vessels.  (b) TAA group showed strong 

expression of caspase-3 in hepatocytes and vascular 

walls and stellate cells in interlobular fibrous septa α-

SMA strong expression. (c & d) Ertu 5 mg and Ertu 10 

mg groups were demonstrating weak positive immune-

reaction of casapase-3 in hepatocytes, expression of α-

SMA is reduced in these groups (Caspase-3 and α-

SMA, X 100). (e) Caspases-3 and α-SMA area 

percentages were immune-stained in the liver tissue of 

several groups; mean ±SE was used to display the 

results, with different letters denoting significant 

differences at p < 0.05. 
 

DISCUSSION 
 

            Thioacetamide (TAA) is an organosulfur 

chemical that induces both hepatocellular necrosis and 

lymphatic infiltration, making it a useful model for 

experimental liver injury (Farjam et al., 2012). In 

order to reliably cause a dose- and time-dependent 

hepatic fibrogenesis in rodents that resembles that 

observed in humans, thioacetamide (TAA) is 

commonly administered either orally or 

intraperitoneally (Abdel-Rahman et al., 2022). After 

undergoing biotransformation via Cytochrome P450, 

TAA becomes TAA sulfoxide, which is then further 

broken down to produce the hazardous metabolite TAA 
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disulfoxide (Raslan et al., 2021). When these 

chemicals attach to hepatic macromolecules, they can 

cause oxidative stress and lipid peroxidation, which 

ultimately leads to hepatic necrosis. Additionally, they 

have the ability to deplete the body's antioxidant 

defenses and cause inflammation (Abdel-Rahman et 

al., 2021). 
 

            Due to the oxidation damage generated by 

TAA, which causes the enzymes to leak into the blood, 

TAA injection in the present investigation caused an 

upsurge in ALT and AST and a drop in albumin levels 

(Chen et al., 2021; Aslam et al., 2022; Elbaset et al., 

2023), demonstrating hepatocellular injury (Ramadan 

et al., 2020). These biochemical alterations were 

validated by histopathological analyses, which showed 

that the TAA group had obvious liver damage. 

Furthermore, the results showed that Ertu had a 

hepatoprotective efficacy against hepatic fibrogenesis 

caused by TAA because it successfully reduced liver 

damage by raising serum albumin and lowering liver 

enzyme levels. Our results are consistent with previous 

research (Gallo et al., 2020; Khaliq et al., 2024). 
 

            The pathogenesis of TAA hepatotoxicity is 

thought to begin with oxidative stress, which is mostly 

brought on by natural defense systems' inability to 

effectively eliminate free radicals (ROS), which 

contributes to liver damage (Ibrahim et al., 2023). It 

was shown that administering TAA to rats significantly 

increased “MDA”, the lipid peroxidation indicator, and 

reduced the levels of the antioxidants “SOD and GSH” 

(Abdelmageed and Abdelrahman 2023). Consistent 

with the previous research, our study demonstrated that 

TAA compromised the antioxidative status, as 

evidenced by elevated lipid peroxidation levels and a 

decline in GSH and SOD in the hepatic tissues. 

Importantly, cells' defense mechanism, Nrf2 and its 

downstream target HO-1, protects against 

inflammation and oxidative damage (O’Connell and 

Hayes 2015). Upon oxidative stress, Nrf2 separates 

from Keap1, the negative regulator, and translocates 

into the nucleus to attach to the ARE, which promotes 

the synthesis of cytoprotective genes and antioxidant 

enzymes like SOD and HO-1 (Wu et al., 2015; Naif 

ALSuhaymi 2025). The antioxidant defense 

mechanism malfunctions as a result of excessive ROS 

generation interfering with the Nrf2's equilibrium 

(Ikram et al., 2019). The therapy of various oxidative 

stress-related illnesses, including TAA-induced liver 

fibrosis, depends on the proper functioning of 

Nrf2/HO-1 (Hussein et al., 2021). Additionally, the 

Nrf2 protein reduces inflammation by inhibiting the 

activation of NF-κB-mediated pro-inflammatory 

signaling pathways (Yanaka 2018; Abu-Risha et al., 

2023). Since Nrf2 is crucial for hepatocyte protection, 

it is thought to be a viable target for the prevention 

and/or treatment of a number of liver disorders (Shin et 

al., 2013). According to our research, TAA reduced 

HO-1 expression and Nrf2 levels and expression in 

hepatic tissue. Similar results showed that TAA 

significantly suppressed the Nrf2 pathway in liver 

tissues (Demirel et al., 2012; Hassan et al., 2019). 
 

            The results of this investigation demonstrated 

that Ertu markedly increased liver SOD, GSH, Nrf2, 

and HO-1 while decreasing hepatic MDA. The present 

data align with earlier research indicating that Ertu 

reduced oxidation stress in rats with an Alzheimer's 

disease (AD) model. (Pang et al., 2023). In line with 

our results, Zhang et al.'s study (Li et al., 2019) showed 

that SGLT2 inhibitors lower oxidation stress by 

triggering Nrf2/ARE signaling and stimulating Nrf2 

translocation to the nucleus in the heart of diabetic 

mice. Therefore, by lowering ROS generation and 

Nrf2/HO-1 signaling activation, Ertu may reduce 

oxidative stress. 
 

            To determine how ertugliflozin reduces 

inflammation, we measured the levels of "TLR4, IL-6, 

and TNF-α" in liver tissues. TLR4 signals trigger the 

cascade of “PI3K, NF-kB, and mitogen-activated 

protein kinase (MAPK)”. These pathways regulate how 

pro-inflammatory genes and cytokines are expressed, 

which impacts cell survival and death (Bai et al., 2014). 

TLR4 stimulation elicits a cascade of events that 

includes NF-kB p65 translocation to the nucleus, which 

leads to the production of inflammatory cytokines 

(TNF-a, INF-g, and IL-6) (Tian et al., 2017). One of 

the primary mediators of inflammation is TNF-α, 

which is produced by Kupffer cells and activated T 

cells (El-Kashef and Serrya 2019). It has been shown 

that IL-6, anotherant pro-inflammatory cytokine, 

enhances acute inflammation and the immune system 

(Mei et al., 2012). HSCs from both normal and 

cirrhotic livers emit IL-6, which increases the 

expression of TGF-β in cirrhotic livers, resulting in 

collagen production and hepatic inflammation (Fu et 

al., 2008). Long-term TGF-β1 cascade signaling 

promotes HSC proliferation, which results in the 

production of ECM and fibrous scarring (Brenner 

2009). Great interest has been shown in targeting TGF-

β1 to cure liver fibrosis (Lee et al., 2019). TGF-β1 

causes myofibroblasts to differentiate, leading to liver 

fibrosis, through “phosphotidylinositol-3-

kinase/Protein Kinase B/PKB” (PI3K/Akt) signaling 

(Kulkarni et al., 2011).  
 

            PI3K triggers Akt by phosphorylating two sites, 

Thr308 and Ser473 (Assinder et al., 2009). The 

serine/threonine kinase Akt is involved in "glucose 

metabolism, inflammation, cell division, and survival," 

among other physiological functions, when it is 

activated (Yamada and Araki 2001). The present 

study found that “TLR4, TNF-α, IL-6, TGF-β1, and 

PI3K” levels were markedly elevated following TAA 

injections. Findings from earlier research were 
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comparable (El-Kashef and Serrya 2019; Mi et al., 

2019; Abdelmageed and Abdelrahman 2023). 

Ertugliflozin, on the other hand, has been shown to 

reduce the previously mentioned indicators. The results 

showed that ertugliflozin may have an anti-

inflammatory effect on hepatic fibrogenesis by 

modulating the TLR4/TGF-β1/PI3K signaling 

pathways. To the best of our knowledge, there is no 

information on how ertugliflozin affects these pro-

inflammatory cytokines in a model of liver fibrosis 

caused by TAA. In line with our results, a study by Abd 

Uljaleel demonstrated that ertugliflozin reduces lung 

dysfunction during endotoxemia in male mice by 

hindering oxidation stress and downstream 

inflammatory “IL-6, IL-1β, TNF-α, and TLR4” 

signaling pathways (Abd Uljaleel and Hassan 2023). 
 

            The primary mechanisms of apoptosis are p53 

and the caspase cascade, which cause chromatin 

condensation and cellular shrinkage (El-Kashef and 

Serrya 2019). Immunostaining in this investigation 

revealed that TAA markedly elevated caspase-3 

expression in the hepatic tissue. Increased oxidative 

stress during TAA hepatotoxicity causes Bax to 

migrate to the outer mitochondrial membrane, 

enhancing the permeability of mitochondria and 

causing cytochrome c to be released into the cytoplasm, 

resulting in caspase 9 and more caspases downstream, 

like caspase-3, to be stimulated, which in turn causes 

caspase-dependent apoptosis (Eleftheriadis et al., 

2016; Ghosh et al., 2016; El-Kashef and Sharawy, 

2018). Ertugliflozin therapy considerably reduced 

these changes. Our results are consistent with those of 

Abbas et al. (Moellmann et al., 2022), who found that 

ertugliflozin decreased left ventricular fibrosis by 

reducing apoptosis in a model of cardiac hypertrophy 

in mice. 
 

            ECM production begins when “quiescent 

HSCs” are activated and transformed into 

“myofibroblasts” that express α-SMA (Zhou et al., 

2014). The TAA-treated group in our study exhibited a 

significant elevation of fibrotic markers, including the 

production of α-SMA and collagen by MTC. Similar 

findings were demonstrated in Đurašević (Đurašević et 

al., 2021) and El-Gendy (El-Gendy et al., 2021) 

studies. Ertugliflozin's antifibrotic action was indicated 

by MTC down-regulation of collagen expression and 

α-SMA. In agreement with our results, the Qiang study 

(Qiang et al., 2015) showed that SGLT-2 inhibitors 

have anti-fibrotic effects by lowering α-SMA, TGF-β, 

collagen1a1 and collagen1a2 expressions. 
 

CONCLUSION 
 

            Collectively, these findings demonstrated that 

ertugliflozin prevented TAA-induced liver fibrosis by 

a number of mechanisms, including antioxidant 

defense (shown by a marked increase in hepatic Nrf2 

and its target genes, HO-1, SOD, and GSH), anti-

inflammatory effect (shown by a significant decrease 

in the hepatic TLR4 pathway and the downstream 

cytokines TNF-α and IL-6), anti-apoptotic activity 

(shown by a marked decrease in hepatic caspase3 

expression), and anti-fibrotic activity (shown by a 

marked decrease in hepatic TGF-β1, PI3K, and α-SMA 

expression). To confirm the hepatoprotective efficacy 

of ertugliflozin therapeutically and explore further 

molecular mechanisms, more research is needed. 
 

Future Perspectives and Conclusive Remarks  
            Findings of this study have significant clinical 

relevance, particularly for liver fibrosis patients who 

may also present with type 2 diabetes mellitus. The 

efficacy of ertugliflozin in the prevention of fibrosis of 

the liver by multiple mechanisms suggests that it may 

prove to be a dual-purpose therapeutic agent, regulating 

blood glucose at the same time as offering protection to 

the liver. This double mechanism could be particularly 

beneficial in patients with diabetes and liver disease, 

potentially making it possible to decrease the number 

of drugs required. The dose-dependent effects observed 

in this study are important for possible clinical dosing 

regimens. Future studies should focus on the following 

areas: (1) long-term safety and efficacy in humans with 

both diabetes and liver fibrosis; (2) determination of 

drug-drug interactions with Ertugliflozin and 

commonly prescribed medication for liver disease; (3) 

its impact on the different causes of liver fibrosis 

beyond TAA-induced; (4) monitoring of possible 

prophylactic action of Ertugliflozin in high-risk 

patients; and (5) comparison between the drug by itself 

and combined therapy with existing antifibrotic drugs 

given to patients with liver fibrosis with an eye toward 

establishing any possible synergism. 
  
Limitations of this study 
            Several limitations must be kept in mind while 

interpreting this study's results. Firstly, while the TAA-

induced liver fibrosis model is well documented, it 

cannot accurately reflect the sophisticated 

pathophysiology of human liver fibrosis, which takes 

years to develop and has several variable etiologies. 

Secondly, the study was performed in male rats only, 

and gender differences in drug response cannot be ruled 

out. Third, the brief study duration (six weeks) may not 

have been sufficient to capture the long-term effects 

and safety profile of ertugliflozin in chronic liver 

disease. Fourth, even though the study demonstrated 

remarkable effects on many molecular pathways, the 

overall mechanism of action may also involve 

pathways that were not examined by this study. Finally, 

the study did not examine the potential effects of 

ertugliflozin on other organs or systems that would be 

important to understand about its overall safety profile 

in the management of liver disease. These are 

limitations that deserve more detailed, longer studies, 
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particularly in patients, before final clinical guidelines 

can be issued.  
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