• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Indexing and Abstracting
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of Applied Veterinary Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 10 (2025)
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 9 (2024)
Volume Volume 8 (2023)
Volume Volume 7 (2022)
Volume Volume 6 (2021)
Volume Volume 5 (2020)
Volume Volume 4 (2019)
Volume Volume 3 (2018)
Volume Volume 2 (2017)
Volume Volume 1 (2016)
Seema, S., Uddin, M., Tamanna, S., Esha, K., Al-Noman, K., Hoque, S., Selim, A., Rahman, M. (2025). Potential of Ionophores as A Feed Additive for Sustainable Beef Cattle Production: Review article. Journal of Applied Veterinary Sciences, 10(2), 35-46. doi: 10.21608/javs.2025.348090.1508
Sabrina Zaman Seema; Moin Uddin; Shamsun Nahar Tamanna; Khatun-A-Jannat Esha; Kazi Md. Al-Noman; S. A. Masudul Hoque; Abu Sadeque Md. Selim; Md. Morshedur Rahman. "Potential of Ionophores as A Feed Additive for Sustainable Beef Cattle Production: Review article". Journal of Applied Veterinary Sciences, 10, 2, 2025, 35-46. doi: 10.21608/javs.2025.348090.1508
Seema, S., Uddin, M., Tamanna, S., Esha, K., Al-Noman, K., Hoque, S., Selim, A., Rahman, M. (2025). 'Potential of Ionophores as A Feed Additive for Sustainable Beef Cattle Production: Review article', Journal of Applied Veterinary Sciences, 10(2), pp. 35-46. doi: 10.21608/javs.2025.348090.1508
Seema, S., Uddin, M., Tamanna, S., Esha, K., Al-Noman, K., Hoque, S., Selim, A., Rahman, M. Potential of Ionophores as A Feed Additive for Sustainable Beef Cattle Production: Review article. Journal of Applied Veterinary Sciences, 2025; 10(2): 35-46. doi: 10.21608/javs.2025.348090.1508

Potential of Ionophores as A Feed Additive for Sustainable Beef Cattle Production: Review article

Article 6, Volume 10, Issue 2, April 2025, Page 35-46  XML PDF (531.59 K)
Document Type: Review Article
DOI: 10.21608/javs.2025.348090.1508
View on SCiNiTO View on SCiNiTO
Authors
Sabrina Zaman Seemaorcid 1; Moin Uddinorcid 2; Shamsun Nahar Tamannaorcid 2; Khatun-A-Jannat Eshaorcid 2; Kazi Md. Al-Nomanorcid 3; S. A. Masudul Hoque4; Abu Sadeque Md. Selimorcid 2; Md. Morshedur Rahman email orcid 3
1Department of Animal Science and Nutrition, Faculty of Veterinary Medicine and Animal Science, Gazipur Agricultural University, Gazipur 1706, Bangladesh
2Department of Animal Science and Nutrition, Faculty of Veterinary Medicine and Animal Science, Gazipur Agricultural University, Gazipur-1706, Bangladesh
3Department of Dairy and Poultry Science, Faculty of Veterinary Medicine and Animal Science, Gazipur Agricultural University, Gazipur-1706, Bangladesh
4Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Gazipur Agricultural University, Gazipur-1706, Bangladesh
Receive Date: 06 January 2025,  Revise Date: 03 March 2025,  Accept Date: 05 March 2025 
Abstract
Ionophores are naturally occurring polyether antibiotics that disrupt ion balance in bacterial cells by selectively transporting metal ions across lipid membranes, primarily affecting Gram-positive bacteria in the rumen. The use of ionophores as a feed additive in sustainable beef cattle production offers a promising and innovative solution to key challenges in livestock farming, such as enhancing feed efficiency, lowering methane emissions, and promoting animal health. However, their use is surrounded by several misconceptions, which can lead to confusion among consumers, policymakers, and even within the agricultural industry. This review aims to assess the advantages, disadvantages, and safety aspects of ionophore use in beef cattle production. Published literature related to ionophores in cattle diets and their effects was collected from PubMed, ScientificGate, Google Scholar, ResearchGate and Academia. Ionophores have been reported to reduce rumen disorders like bloat and acidosis. Ionophores reduce methane emissions by altering ruminal fermentation to favor propionate production over acetate and butyrate. Ionophores may exert varying effects depending on the animal, diet, and type and dose of ionophore administered. Studies suggest limited cross-resistance to medically important antibiotics. As ionophores are metabolized and excreted rapidly, it is expected to have minimal adverse effects on human health.Overall, ionophores are promising feed additives that may play a significant role in sustainable beef cattle production, offering producers the opportunity to improve profitability while reducing environmental risks.
Keywords
Antimicrobial resistance; Environmental hazards; Ionophores; Methane reduction; Rumen fermentation
Main Subjects
Animal Nutrition
References
ADENIJI, Y. A., SANNI, M. O., and MUTASSIM, A. M., 2020. Review: Manipulation of the rumen using additives. Representative Opinions. 12(2), 1-6. https://doi.org/10.7537/marsroj120220.01

ADHIKARI, P., KIESS, A., ADHIKARI, R., and JHA, R., 2020. An approach to alternative strategies to control avian coccidiosis and necrotic enteritis. Journal of applied poultry research. 29: 515-534. https://doi.org/10.1016/j.japr.2019.11.005

ANTOSZCZAK, M., RUTKOWSKI, J., and HUCZYŃSKI, A., 2014. Structure and biological activity of polyether ionophores and their semisynthetic derivatives. Bioactive natural products: chem biol. p.107-70. https://doi.org/10.1002/9783527684403.ch6

APPUHAMY, J. R. N., STRATHE, A. B., JAYASUNDARA, S., WAGNER-RIDDLE, C., DIJKSTRA, J., FRANCE, J., and KEBREAB, E., 2013. Anti-methanogenic effects of monensin in dairy and beef cattle: A meta-analysis. Journal of Dairy Science. 96(8), 5161-5173. https://doi.org/10.3168/jds.2012-5923

AZZAZ, H. H., MURAD, H. A., and MORSY, T. A., 2015. Utility of ionophores for ruminant animals: a review. Asian Journal of Animal Sciences. 9(6), 254-265. https://doi.org/10.3923/ajas.2015.254.265

BABA, M., BASO, Z., UBAYI, Y. K. M., and SARIYYU, S., 2020. The roles of ionophores in ruminant animals nutrition. Iosr journal of agriculture and veterinary science. 13: 46-51. https://doi.org/10.9790/2380-1310014651

BELL, N. L., CALLAWAY, T. R., ANDERSON, R. C., FRANCO, M. O., SAWYER, J. E., and WICKERSHAM, T. A., 2017. Effect of monensin withdrawal on intake, digestion, and ruminal fermentation parameters by Bos taurus indicus and Bos taurus taurus steers consuming bermudagrass hay. Journal of Animal Science. 95(6), 2747–2757. https://doi.org/10.2527/jas.2016.1013

BRITO, E. S. A., ANDRADE, T. G., OLIVEIRA, C. H. S. D., and MOURA, V. M. D. D., 2020. Outbreak of monensin poisoning in cattle due to supplementation error. Ciência Rural. 50(11): e20190996. https://doi.org/10.1590/0103-8478cr20190996

CARRESI, C., MARABELLI, R., RONCADA, P., and BRITTI, D., 2024. Is the Use of Monensin Another Trojan Horse for the Spread of Antimicrobial Resistance? Antibiotics. 13(2), 129. https://doi.org/10.3390/antibiotics13020129

DE RICCARDIS, F., IZZO, I., MONTESARCHIO, D., and TECILLA, P., 2013. Ion transport through lipid bilayers by synthetic ionophores: Modulation of activity and selectivity. Accounts of Chemical Research Journal. 46(12), 2781-2790.  https://doi.org/10.1021/ar4000136

DEMBITSKY, V. M. 2022. Natural Polyether Ionophores and Their Pharmacological Profile. Marine Drugs. 20(5), 292.  https://doi.org/10.3390/md20050292

DUFFIELD, T. F., MERRILL, J. K., and BAGG, R. N., 2012. Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. Journal of animal science: 4583-4592. https://doi.org/10.2527/jas.2011-5018

EKINCI, İ. B., CHŁODOWSKA, A., and OLEJNIK, M., 2023. Ionophore toxicity in animals: a review of clinical and molecular aspects. International Journal of Molecular Sciences. 24(2), 1696. https://doi.org/10.3390/ijms24021696

ELLIS, J. L., DIJKSTRA, J., BANNINK, A., KEBREAB, E., HOOK, S. E., ARCHIBEQUE, S., and FRANCE, J., 2012. Quantifying the effect of monensin dose on the rumen volatile fatty acid profile in high-grain-fed beef cattle. Journal of Animal Science. 90(8), 2717-2726. https://doi.org/10.2527/jas.2011-3966

EL-SAYED A., FAYED R.H., CASTAÑEDA VÁZQUEZ H., and RÜEGGE K., 2022. Future Trend to Replace Chemical Products with Nutraceutical Food / Feed Additive: A Mini Review. Journal of Applied Veterinary Sciences, 7 (3): 20-29. https://doi.org/10.21608/javs.2022.130321.1140

EL-WAZIRY, A. M., BASMAEIL, S. M., ALHIDARY, I. A., SULIMAN, G. M., ABDELRAHMAN, M. M., and AL-GARADI, M. A., 2022. Ionophores: their effects on ruminal fermentation, animal performance and carcass characteristics and meat quality. Advances in Animal and Veterinary Sciences.10, 2641-9. http://dx.doi.org/10.17582/journal.aavs/2022/10.12.2641.2649

ENSLEY, S. 2020. Ionophore use and toxicosis in cattle. Veterinary clinics of North America. Food animal practice. 36(3), 641-652. https://doi.org/10.1016/j.cvfa.2020.07.001

FELIX, T. L. 2024. Ionophores: A technology to improve cattle efficiency. Available at: https://extension.psu.edu/ionophores-a-technology-to-improve-cattle-efficiency

FREDERIKSEN, R. F., SLETTEMEÅS, J. S., GRANSTAD, S., LAGESEN, K., PIKKEMAAT, M. G., URDAHL, A. M., and SIMM, R., 2024. Polyether ionophore resistance in a one health perspective. Frontiers in Microbiology. 15, 1347490. https://doi.org/10.3389/fmicb.2024.1347490

GOLDER, H. M., and LEAN, I. J., 2016. A meta-analysis of lasalocid effects on rumen measures, beef and dairy performance, and carcass traits in cattle. Journal of Animal Science. 94(1), 306-326. https://doi.org/10.2527/jas.2015-9694

GUAN, H., WITTENBERG, K. M., OMINSKI, K. H., and KRAUSE, D. O., 2006. Efficacy of ionophores in cattle diets for mitigation of enteric methane. Journal of Animal Science. 84(7), 1896-1906. https://doi.org/10.2527/jas.2005-652

HANSEN, M., BJÖRKLUND, E., KROGH, K. A., and HALLING-SØRENSEN, B., 2009. Analytical strategies for assessing ionophores in the environment. TrAC Trends in Analytical Chemistry. 28(5), 21-533. https://doi.org/10.1016/j.trac.2009.01.008

HERSOM, M., THRIFT, T., and YELICH, J., 2014. The impact of production technologies used in the beef cattle industry. Ask IFAS, University of Florida. http://dx.doi.org/10.32473/edis-an272-2011

HUCZYŃSKI, A. 2012. Polyether ionophores—promising bioactive molecules for cancer therapy. Bioorganic & Medicinal Chemistry Letters. 22(23), 7002-7010. https://doi.org/10.1016/j.bmcl.2012.09.046

IPHARRAGUERRE, I. R., and CLARK, J. H., 2003. Usefulness of ionophores for lactating dairy cows: a review. Animal feed science and technology. 106: 39-57. https://doi.org/10.1016/S0377-8401(03)00065-8

ISLAM, M., and LEE, S. S., 2019. Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants. Journal of Animal Science and Technology. 61(3), 122. https://doi.org/10.5187/jast.2019.61.3.122

KUNKLE, W. E., JOHNS, J. T., POORE, M. H., and HERD, D. B., 2000. Designing supplementation programs for beef cattle fed forage-based diets. Journal of Animal Science. 77(1), 1-11. https://doi.org/10.2527/jas2000.00218812007700ES0012x

LI, G., DE OLIVEIRA, D. M., and WALKER, M. J., 2022. The antimicrobial and immunomodulatory effects of ionophores for the treatment of human infection. Journal of Inorganic Biochemistry. 227, 111661.  https://doi.org/10.1016/j.jinorgbio.2021.111661

LIMEDE, A. C., MARQUES, R. S., POLIZEL, D. M., CAPPELLOZZA, B. I., MISZURA, A. A., BARROSO, J. P. R., and PIRES, A. V., 2021. Effects of supplementation with narasin, salinomycin, or flavomycin on performance and ruminal fermentation characteristics of Bos indicus Nellore cattle fed with forage-based diets. Journal of Animal Science. 99(4), skab005. https://doi.org/10.1093/jas/skab005

MARQUES, R. D. S., and COOKE, R. F., 2021. Effects of ionophores on ruminal function of beef cattle. Animals 11: 2871. https://doi.org/10.3390/ani11102871

MCGUFFEY, R. K., RICHARDSON, L. F., and WILKINSON, J. I. D., 2001. Ionophores for dairy cattle: current status and future outlook. Journal of Dairy Science. 84, E194-E203. https://doi.org/10.3168/jds.S0022-0302(01)70218-4

MOONEY, D., RICHARDS, K. G., DANAHER, M., GRANT, J., GILL, L., MELLANDER, P. E., and COXON, C.E., 2020. An investigation of anticoccidial veterinary drugs as emerging organic contaminants in groundwater. Sci Total Environ. 746: 141116. https://doi.org/10.1016/j.scitotenv.2020.141116

NILSSON, O., MYRENÅS, M., and ÅGREN, J., 2016. Transferable genes putatively conferring elevated minimum inhibitory concentrations of narasin in Enterococcus faecium from Swedish broilers. Veterinary Microbiology. 184, 80-3. https://doi.org/10.1016/j.vetmic.2016.01.012

NOVILLA, M. N. 2018. Ionophores. Veterinary Toxicology. 1:3rd ed. Academic Press.; p 1073-1092. https://doi.org/10.1016/B978-0-12-811410-0.00078-7

OGUNADE, I., SCHWEICKART, H., ANDRIES, K., LAY, J., and ADEYEMI, J., 2018. Monensin Alters the Functional and Metabolomic Profile of Rumen Microbiota in Beef Cattle. Animals (Basel). 8(11): 211. https://doi.org/10.3390/ani8110211

OLIVERI, V. 2020. Biomedical applications of copper ionophores. Coordination Chemistry Reviews. 422, 213474. https://doi.org/10.1016/j.ccr.2020.213474

PARKER, C. D., LISTER, S. A., and GITTINS, J., 2021. Impact assessment of the reduction or removal of ionophores used for controlling coccidiosis in the UK broiler industry. Veterinary Record. 189, (11). https://doi.org/10.1002/vetr.513

PATEL, M. B., GARRAD, E., MEISEL, J. W., NEGIN, S., GOKEL, M. R., and GOKEL, G. W., 2019. Synthetic ionophores as non-resistant antibiotic adjuvants. RSC Advances. 9(4), 2217-2230. https://doi.org/10.1039/C8RA07641C

POLIZEL, D. M., CAPPELLOZZA, B. I., HOE, F., LOPES, C. N., BARROSO, J. P., MISZURA, A., OLIVEIRA, G. B., GOBATO, L., and PIRES, A. V., 2020. Effects of narasin supplementation on dry matter intake and rumen fermentation characteristics of Bos indicus steers fed a high-forage diet. Translational Animal Science. 4(1), 118-128. https://doi.org/10.1093/tas/txz164

PRATHAP, P., CHAUHAN, S. S., LEURY, B. J., COTTRELL, J. J., and DUNSHE, A. F. R., 2021. Towards Sustainable Livestock Production: Estimation of Methane Emissions and Dietary Interventions for Mitigation. Sustainability. 13(11), 6081.  https://doi.org/10.3390/su13116081

RODER, J. D. 2011. Ionophore toxicity and tolerance. Veterinary Clinics of North America: Food Animal Practice. 27(2), 305-314. https://doi.org/10.1016/j.cvfa.2011.02.012

RUSSELL, J. B., and HOULIHAN A. J., 2003. Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiology Reviews. 27(1), 65-74. https://doi.org/10.1016/S0168-6445(03)00019-6

SAUNOIS, M., JACKSON, R. B., BOUSQUET, P., POULTER, B., and CANADELL, J. G., 2016. The growing role of methane in anthropogenic climate change. Environmental Research Letters. 11(12), 120207. https://doi.org/10.1088/1748-9326/11/12/120207

SCHÄREN, M., DRONG, C., KIRI, K., RIEDE, S., GARDENER, M., MEYER, U., and DÄNICKE, S., 2017. Differential effects of monensin and a blend of essential oils on rumen microbiota composition of transition dairy cows. Journal of Dairy Science. 100(4), 2765-2783. https://doi.org/10.3168/jds.2016-11994

SOARES, V. M., PEREIRA, J. G., BARRETO, F., JANK, L., RAU, R. B., RIBEIRO, C. B., DOS SANTOS CASTILHOS, T., TOMASZEWSKI, C. A., HILLESHEIM, D. R., MONDADORI, R. G., and TADIELO, L. E., 2022. Residues of veterinary drugs in animal products commercialized in the border region of Brazil, Argentina, and Uruguay. Journal of food protection. 85(6), 980-986. https://doi.org/10.4315/JFP-21-415

SU, Z., MRDENOVIC, D., SEK S., and LIPKOWSKI J., 2020. Ionophore properties of valinomycin in the model bilayer lipid membrane 1. Selectivity towards a cation. Journal of Solid-State Electrochemistry. 24, 3125-3134. https://doi.org/10.1007/s10008-020-04777-x

TEDESCHI, L. O., CALLAWAY, T. R., MUIR, J. P., and ANDERSON, R. C., 2011. Potential environmental benefits of feed additives and other strategies for ruminant production. Revista Brasileira de Zootecnia. 40, 291-30. https://www.sbz.org.br/revista/artigos/66284.pdf

THOMAS, M., WEBB, M., GHIMIRE, S., BLAIR, A., OLSON, K., FENSKE, G. J., FONDER, A. T., CHRISTOPHER-HEN NINGS, J., BRAKE, D., and SCARIA, J., 2017. Metagenomic characterization of the effect of feed additives on the gut microbiome and antibiotic resistome of feedlot cattle. Scientific Reports. 7(1), 12257. https://www.nature.com/articles/s41598-017-12481-6

TSETEN, T., SANJORJO, R. A., KWON, M., KIM, and S. W., 2022. Strategies to mitigate enteric methane emissions from ruminant animals. Journal of Microbiology and Biotechnology. 32(3), 269.  https://doi.org/10.4014/jmb.2202.02019

VAN NORMAN, G. A. 2016. Drugs, Devices, and the FDA: Part 2. JACC: Basic to Translational Science. 1(4), 277–287. https://doi.org/10.1016/j.jacbts.2016.03.009

WANG, L., ZHANG, G., LI, Y., and ZHANG, Y., 2020. Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals. 10(2), 223. https://doi.org/10.3390/ani10020223

WARSI, O. M., UPTERWORTH, L. M., BREIDENSTEIN, A., LUSTIG, U., MIKKELSEN, K., NAGY, T., SZATMARI, D., INGMER, H., and ANDERSSON, D.I., 2024. Staphylococcus aureus mutants resistant to the feed-additive monensin show increased virulence and altered purine metabolism. Mbio 2024; 15(2): e03155-23. https://doi.org/10.1128/mbio.03155-23

WEIMER, P. J., STEVENSON, D. M., MERTENS, D. R., and THOMAS, E. E., 2008. Effect of monensin feeding and withdrawal on populations of individual bacterial species in the rumen of lactating dairy cows fed high-starch rations. Applied Microbiology and Biotechnology. 80(1), 135-145. https://doi.org/10.1007/s00253-008-1528-9

WEISS, C. P., BECK, P. A., GADBERRY, M. S., RICHESON, J. T., WILSON, B. K., ROBINSON, C. A., ZHAO, J., HESS, T., and HUBBELL, III. D., 2020. Effects of intake of monensin during the stocker phase and subsequent finishing phase on performance and carcass characteristics of finishing beef steers. Applied Animal Science. 36(5), 668-676. https://doi.org/10.15232/aas.2020-02031

WONG, A. 2019. Unknown risk on the farm: Does agricultural use of ionophores contribute to the burden of antimicrobial resistance? Msphere. 4(5), 10-128. https://doi.org/10.1128/msphere.00433-19

 

Statistics
Article View: 622
PDF Download: 480
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.