ADHIKARI, P., KIESS, A., ADHIKARI, R., and JHA, R., 2020. An approach to alternative strategies to control avian coccidiosis and necrotic enteritis. Journal of applied poultry research. 29: 515-534.
https://doi.org/10.1016/j.japr.2019.11.005
ANTOSZCZAK, M., RUTKOWSKI, J., and HUCZYŃSKI, A., 2014. Structure and biological activity of polyether ionophores and their semisynthetic derivatives. Bioactive natural products: chem biol. p.107-70.
https://doi.org/10.1002/9783527684403.ch6
APPUHAMY, J. R. N., STRATHE, A. B., JAYASUNDARA, S., WAGNER-RIDDLE, C., DIJKSTRA, J., FRANCE, J., and KEBREAB, E., 2013. Anti-methanogenic effects of monensin in dairy and beef cattle: A meta-analysis. Journal of Dairy Science. 96(8), 5161-5173.
https://doi.org/10.3168/jds.2012-5923
BABA, M., BASO, Z., UBAYI, Y. K. M., and SARIYYU, S., 2020. The roles of ionophores in ruminant animals nutrition. Iosr journal of agriculture and veterinary science. 13: 46-51.
https://doi.org/10.9790/2380-1310014651
BELL, N. L., CALLAWAY, T. R., ANDERSON, R. C., FRANCO, M. O., SAWYER, J. E., and WICKERSHAM, T. A., 2017. Effect of monensin withdrawal on intake, digestion, and ruminal fermentation parameters by Bos taurus indicus and Bos taurus taurus steers consuming bermudagrass hay. Journal of Animal Science. 95(6), 2747–2757.
https://doi.org/10.2527/jas.2016.1013
BRITO, E. S. A., ANDRADE, T. G., OLIVEIRA, C. H. S. D., and MOURA, V. M. D. D., 2020. Outbreak of monensin poisoning in cattle due to supplementation error. Ciência Rural. 50(11): e20190996.
https://doi.org/10.1590/0103-8478cr20190996
CARRESI, C., MARABELLI, R., RONCADA, P., and BRITTI, D., 2024. Is the Use of Monensin Another Trojan Horse for the Spread of Antimicrobial Resistance? Antibiotics. 13(2), 129.
https://doi.org/10.3390/antibiotics13020129
DE RICCARDIS, F., IZZO, I., MONTESARCHIO, D., and TECILLA, P., 2013. Ion transport through lipid bilayers by synthetic ionophores: Modulation of activity and selectivity. Accounts of Chemical Research Journal. 46(12), 2781-2790.
https://doi.org/10.1021/ar4000136
DUFFIELD, T. F., MERRILL, J. K., and BAGG, R. N., 2012. Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. Journal of animal science: 4583-4592.
https://doi.org/10.2527/jas.2011-5018
EKINCI, İ. B., CHŁODOWSKA, A., and OLEJNIK, M., 2023. Ionophore toxicity in animals: a review of clinical and molecular aspects. International Journal of Molecular Sciences. 24(2), 1696.
https://doi.org/10.3390/ijms24021696
ELLIS, J. L., DIJKSTRA, J., BANNINK, A., KEBREAB, E., HOOK, S. E., ARCHIBEQUE, S., and FRANCE, J., 2012. Quantifying the effect of monensin dose on the rumen volatile fatty acid profile in high-grain-fed beef cattle. Journal of Animal Science. 90(8), 2717-2726.
https://doi.org/10.2527/jas.2011-3966
EL-SAYED A., FAYED R.H., CASTAÑEDA VÁZQUEZ H., and RÜEGGE K., 2022. Future Trend to Replace Chemical Products with Nutraceutical Food / Feed Additive: A Mini Review. Journal of Applied Veterinary Sciences, 7 (3): 20-29.
https://doi.org/10.21608/javs.2022.130321.1140
EL-WAZIRY, A. M., BASMAEIL, S. M., ALHIDARY, I. A., SULIMAN, G. M., ABDELRAHMAN, M. M., and AL-GARADI, M. A., 2022. Ionophores: their effects on ruminal fermentation, animal performance and carcass characteristics and meat quality. Advances in Animal and Veterinary Sciences.10, 2641-9.
http://dx.doi.org/10.17582/journal.aavs/2022/10.12.2641.2649
FREDERIKSEN, R. F., SLETTEMEÅS, J. S., GRANSTAD, S., LAGESEN, K., PIKKEMAAT, M. G., URDAHL, A. M., and SIMM, R., 2024. Polyether ionophore resistance in a one health perspective. Frontiers in Microbiology. 15, 1347490.
https://doi.org/10.3389/fmicb.2024.1347490
GOLDER, H. M., and LEAN, I. J., 2016. A meta-analysis of lasalocid effects on rumen measures, beef and dairy performance, and carcass traits in cattle. Journal of Animal Science. 94(1), 306-326.
https://doi.org/10.2527/jas.2015-9694
GUAN, H., WITTENBERG, K. M., OMINSKI, K. H., and KRAUSE, D. O., 2006. Efficacy of ionophores in cattle diets for mitigation of enteric methane. Journal of Animal Science. 84(7), 1896-1906.
https://doi.org/10.2527/jas.2005-652
HANSEN, M., BJÖRKLUND, E., KROGH, K. A., and HALLING-SØRENSEN, B., 2009. Analytical strategies for assessing ionophores in the environment. TrAC Trends in Analytical Chemistry. 28(5), 21-533.
https://doi.org/10.1016/j.trac.2009.01.008
ISLAM, M., and LEE, S. S., 2019. Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants. Journal of Animal Science and Technology. 61(3), 122.
https://doi.org/10.5187/jast.2019.61.3.122
LI, G., DE OLIVEIRA, D. M., and WALKER, M. J., 2022. The antimicrobial and immunomodulatory effects of ionophores for the treatment of human infection. Journal of Inorganic Biochemistry. 227, 111661.
https://doi.org/10.1016/j.jinorgbio.2021.111661
LIMEDE, A. C., MARQUES, R. S., POLIZEL, D. M., CAPPELLOZZA, B. I., MISZURA, A. A., BARROSO, J. P. R., and PIRES, A. V., 2021. Effects of supplementation with narasin, salinomycin, or flavomycin on performance and ruminal fermentation characteristics of Bos indicus Nellore cattle fed with forage-based diets. Journal of Animal Science. 99(4), skab005.
https://doi.org/10.1093/jas/skab005
MOONEY, D., RICHARDS, K. G., DANAHER, M., GRANT, J., GILL, L., MELLANDER, P. E., and COXON, C.E., 2020. An investigation of anticoccidial veterinary drugs as emerging organic contaminants in groundwater. Sci Total Environ. 746: 141116.
https://doi.org/10.1016/j.scitotenv.2020.141116
NILSSON, O., MYRENÅS, M., and ÅGREN, J., 2016. Transferable genes putatively conferring elevated minimum inhibitory concentrations of narasin in Enterococcus faecium from Swedish broilers. Veterinary Microbiology. 184, 80-3.
https://doi.org/10.1016/j.vetmic.2016.01.012
OGUNADE, I., SCHWEICKART, H., ANDRIES, K., LAY, J., and ADEYEMI, J., 2018. Monensin Alters the Functional and Metabolomic Profile of Rumen Microbiota in Beef Cattle. Animals (Basel). 8(11): 211.
https://doi.org/10.3390/ani8110211
PARKER, C. D., LISTER, S. A., and GITTINS, J., 2021. Impact assessment of the reduction or removal of ionophores used for controlling coccidiosis in the UK broiler industry. Veterinary Record. 189, (11).
https://doi.org/10.1002/vetr.513
PATEL, M. B., GARRAD, E., MEISEL, J. W., NEGIN, S., GOKEL, M. R., and GOKEL, G. W., 2019. Synthetic ionophores as non-resistant antibiotic adjuvants. RSC Advances. 9(4), 2217-2230. https://doi.org/
10.1039/C8RA07641C
POLIZEL, D. M., CAPPELLOZZA, B. I., HOE, F., LOPES, C. N., BARROSO, J. P., MISZURA, A., OLIVEIRA, G. B., GOBATO, L., and PIRES, A. V., 2020. Effects of narasin supplementation on dry matter intake and rumen fermentation characteristics of Bos indicus steers fed a high-forage diet. Translational Animal Science. 4(1), 118-128.
https://doi.org/10.1093/tas/txz164
PRATHAP, P., CHAUHAN, S. S., LEURY, B. J., COTTRELL, J. J., and DUNSHE, A. F. R., 2021. Towards Sustainable Livestock Production: Estimation of Methane Emissions and Dietary Interventions for Mitigation. Sustainability. 13(11), 6081.
https://doi.org/10.3390/su13116081
SAUNOIS, M., JACKSON, R. B., BOUSQUET, P., POULTER, B., and CANADELL, J. G., 2016. The growing role of methane in anthropogenic climate change. Environmental Research Letters. 11(12), 120207.
https://doi.org/10.1088/1748-9326/11/12/120207
SCHÄREN, M., DRONG, C., KIRI, K., RIEDE, S., GARDENER, M., MEYER, U., and DÄNICKE, S., 2017. Differential effects of monensin and a blend of essential oils on rumen microbiota composition of transition dairy cows. Journal of Dairy Science. 100(4), 2765-2783.
https://doi.org/10.3168/jds.2016-11994
SOARES, V. M., PEREIRA, J. G., BARRETO, F., JANK, L., RAU, R. B., RIBEIRO, C. B., DOS SANTOS CASTILHOS, T., TOMASZEWSKI, C. A., HILLESHEIM, D. R., MONDADORI, R. G., and TADIELO, L. E., 2022. Residues of veterinary drugs in animal products commercialized in the border region of Brazil, Argentina, and Uruguay. Journal of food protection. 85(6), 980-986.
https://doi.org/10.4315/JFP-21-415
SU, Z., MRDENOVIC, D., SEK S., and LIPKOWSKI J., 2020. Ionophore properties of valinomycin in the model bilayer lipid membrane 1. Selectivity towards a cation. Journal of Solid-State Electrochemistry. 24, 3125-3134.
https://doi.org/10.1007/s10008-020-04777-x
TEDESCHI, L. O., CALLAWAY, T. R., MUIR, J. P., and ANDERSON, R. C., 2011. Potential environmental benefits of feed additives and other strategies for ruminant production. Revista Brasileira de Zootecnia. 40, 291-30.
https://www.sbz.org.br/revista/artigos/66284.pdf
THOMAS, M., WEBB, M., GHIMIRE, S., BLAIR, A., OLSON, K., FENSKE, G. J., FONDER, A. T., CHRISTOPHER-HEN NINGS, J., BRAKE, D., and SCARIA, J., 2017. Metagenomic characterization of the effect of feed additives on the gut microbiome and antibiotic resistome of feedlot cattle. Scientific Reports. 7(1), 12257.
https://www.nature.com/articles/s41598-017-12481-6
TSETEN, T., SANJORJO, R. A., KWON, M., KIM, and S. W., 2022. Strategies to mitigate enteric methane emissions from ruminant animals. Journal of Microbiology and Biotechnology. 32(3), 269.
https://doi.org/10.4014/jmb.2202.02019
WANG, L., ZHANG, G., LI, Y., and ZHANG, Y., 2020. Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals. 10(2), 223.
https://doi.org/10.3390/ani10020223
WARSI, O. M., UPTERWORTH, L. M., BREIDENSTEIN, A., LUSTIG, U., MIKKELSEN, K., NAGY, T., SZATMARI, D., INGMER, H., and ANDERSSON, D.I., 2024. Staphylococcus aureus mutants resistant to the feed-additive monensin show increased virulence and altered purine metabolism. Mbio 2024; 15(2): e03155-23.
https://doi.org/10.1128/mbio.03155-23
WEIMER, P. J., STEVENSON, D. M., MERTENS, D. R., and THOMAS, E. E., 2008. Effect of monensin feeding and withdrawal on populations of individual bacterial species in the rumen of lactating dairy cows fed high-starch rations. Applied Microbiology and Biotechnology. 80(1), 135-145.
https://doi.org/10.1007/s00253-008-1528-9
WEISS, C. P., BECK, P. A., GADBERRY, M. S., RICHESON, J. T., WILSON, B. K., ROBINSON, C. A., ZHAO, J., HESS, T., and HUBBELL, III. D., 2020. Effects of intake of monensin during the stocker phase and subsequent finishing phase on performance and carcass characteristics of finishing beef steers. Applied Animal Science. 36(5), 668-676.
https://doi.org/10.15232/aas.2020-02031