Seema, S., Uddin, M., Tamanna, S., Esha, K., Al-Noman, K., Hoque, S., Selim, A., Rahman, M. (2025). Potential of Ionophores as A Feed Additive for Sustainable Beef Cattle Production: Review article. Journal of Applied Veterinary Sciences, 10(2), 35-46. doi: 10.21608/javs.2025.348090.1508
Sabrina Zaman Seema; Moin Uddin; Shamsun Nahar Tamanna; Khatun-A-Jannat Esha; Kazi Md. Al-Noman; S. A. Masudul Hoque; Abu Sadeque Md. Selim; Md. Morshedur Rahman. "Potential of Ionophores as A Feed Additive for Sustainable Beef Cattle Production: Review article". Journal of Applied Veterinary Sciences, 10, 2, 2025, 35-46. doi: 10.21608/javs.2025.348090.1508
Seema, S., Uddin, M., Tamanna, S., Esha, K., Al-Noman, K., Hoque, S., Selim, A., Rahman, M. (2025). 'Potential of Ionophores as A Feed Additive for Sustainable Beef Cattle Production: Review article', Journal of Applied Veterinary Sciences, 10(2), pp. 35-46. doi: 10.21608/javs.2025.348090.1508
Seema, S., Uddin, M., Tamanna, S., Esha, K., Al-Noman, K., Hoque, S., Selim, A., Rahman, M. Potential of Ionophores as A Feed Additive for Sustainable Beef Cattle Production: Review article. Journal of Applied Veterinary Sciences, 2025; 10(2): 35-46. doi: 10.21608/javs.2025.348090.1508
Potential of Ionophores as A Feed Additive for Sustainable Beef Cattle Production: Review article
1Department of Animal Science and Nutrition, Faculty of Veterinary Medicine and Animal Science, Gazipur Agricultural University, Gazipur 1706, Bangladesh
2Department of Animal Science and Nutrition, Faculty of Veterinary Medicine and Animal Science, Gazipur Agricultural University, Gazipur-1706, Bangladesh
3Department of Dairy and Poultry Science, Faculty of Veterinary Medicine and Animal Science, Gazipur Agricultural University, Gazipur-1706, Bangladesh
4Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Gazipur Agricultural University, Gazipur-1706, Bangladesh
Receive Date: 06 January 2025,
Revise Date: 03 March 2025,
Accept Date: 05 March 2025
Abstract
Ionophores are naturally occurring polyether antibiotics that disrupt ion balance in bacterial cells by selectively transporting metal ions across lipid membranes, primarily affecting Gram-positive bacteria in the rumen. The use of ionophores as a feed additive in sustainable beef cattle production offers a promising and innovative solution to key challenges in livestock farming, such as enhancing feed efficiency, lowering methane emissions, and promoting animal health. However, their use is surrounded by several misconceptions, which can lead to confusion among consumers, policymakers, and even within the agricultural industry. This review aims to assess the advantages, disadvantages, and safety aspects of ionophore use in beef cattle production. Published literature related to ionophores in cattle diets and their effects was collected from PubMed, ScientificGate, Google Scholar, ResearchGate and Academia. Ionophores have been reported to reduce rumen disorders like bloat and acidosis. Ionophores reduce methane emissions by altering ruminal fermentation to favor propionate production over acetate and butyrate. Ionophores may exert varying effects depending on the animal, diet, and type and dose of ionophore administered. Studies suggest limited cross-resistance to medically important antibiotics. As ionophores are metabolized and excreted rapidly, it is expected to have minimal adverse effects on human health.Overall, ionophores are promising feed additives that may play a significant role in sustainable beef cattle production, offering producers the opportunity to improve profitability while reducing environmental risks.
ADENIJI, Y. A., SANNI, M. O., and MUTASSIM, A. M., 2020. Review: Manipulation of the rumen using additives. Representative Opinions. 12(2), 1-6. https://doi.org/10.7537/marsroj120220.01
ADHIKARI, P., KIESS, A., ADHIKARI, R., and JHA, R., 2020. An approach to alternative strategies to control avian coccidiosis and necrotic enteritis. Journal of applied poultry research. 29: 515-534. https://doi.org/10.1016/j.japr.2019.11.005
ANTOSZCZAK, M., RUTKOWSKI, J., and HUCZYŃSKI, A., 2014. Structure and biological activity of polyether ionophores and their semisynthetic derivatives. Bioactive natural products: chem biol. p.107-70. https://doi.org/10.1002/9783527684403.ch6
APPUHAMY, J. R. N., STRATHE, A. B., JAYASUNDARA, S., WAGNER-RIDDLE, C., DIJKSTRA, J., FRANCE, J., and KEBREAB, E., 2013. Anti-methanogenic effects of monensin in dairy and beef cattle: A meta-analysis. Journal of Dairy Science. 96(8), 5161-5173. https://doi.org/10.3168/jds.2012-5923
AZZAZ, H. H., MURAD, H. A., and MORSY, T. A., 2015. Utility of ionophores for ruminant animals: a review. Asian Journal of Animal Sciences. 9(6), 254-265. https://doi.org/10.3923/ajas.2015.254.265
BABA, M., BASO, Z., UBAYI, Y. K. M., and SARIYYU, S., 2020. The roles of ionophores in ruminant animals nutrition. Iosr journal of agriculture and veterinary science. 13: 46-51. https://doi.org/10.9790/2380-1310014651
BELL, N. L., CALLAWAY, T. R., ANDERSON, R. C., FRANCO, M. O., SAWYER, J. E., and WICKERSHAM, T. A., 2017. Effect of monensin withdrawal on intake, digestion, and ruminal fermentation parameters by Bos taurus indicus and Bos taurus taurus steers consuming bermudagrass hay. Journal of Animal Science. 95(6), 2747–2757. https://doi.org/10.2527/jas.2016.1013
BRITO, E. S. A., ANDRADE, T. G., OLIVEIRA, C. H. S. D., and MOURA, V. M. D. D., 2020. Outbreak of monensin poisoning in cattle due to supplementation error. Ciência Rural. 50(11): e20190996. https://doi.org/10.1590/0103-8478cr20190996
CARRESI, C., MARABELLI, R., RONCADA, P., and BRITTI, D., 2024. Is the Use of Monensin Another Trojan Horse for the Spread of Antimicrobial Resistance? Antibiotics. 13(2), 129. https://doi.org/10.3390/antibiotics13020129
DE RICCARDIS, F., IZZO, I., MONTESARCHIO, D., and TECILLA, P., 2013. Ion transport through lipid bilayers by synthetic ionophores: Modulation of activity and selectivity. Accounts of Chemical Research Journal. 46(12), 2781-2790. https://doi.org/10.1021/ar4000136
DEMBITSKY, V. M. 2022. Natural Polyether Ionophores and Their Pharmacological Profile. Marine Drugs. 20(5), 292. https://doi.org/10.3390/md20050292
DUFFIELD, T. F., MERRILL, J. K., and BAGG, R. N., 2012. Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. Journal of animal science: 4583-4592. https://doi.org/10.2527/jas.2011-5018
EKINCI, İ. B., CHŁODOWSKA, A., and OLEJNIK, M., 2023. Ionophore toxicity in animals: a review of clinical and molecular aspects. International Journal of Molecular Sciences. 24(2), 1696. https://doi.org/10.3390/ijms24021696
ELLIS, J. L., DIJKSTRA, J., BANNINK, A., KEBREAB, E., HOOK, S. E., ARCHIBEQUE, S., and FRANCE, J., 2012. Quantifying the effect of monensin dose on the rumen volatile fatty acid profile in high-grain-fed beef cattle. Journal of Animal Science. 90(8), 2717-2726. https://doi.org/10.2527/jas.2011-3966
EL-SAYED A., FAYED R.H., CASTAÑEDA VÁZQUEZ H., and RÜEGGE K., 2022. Future Trend to Replace Chemical Products with Nutraceutical Food / Feed Additive: A Mini Review. Journal of Applied Veterinary Sciences, 7 (3): 20-29. https://doi.org/10.21608/javs.2022.130321.1140
EL-WAZIRY, A. M., BASMAEIL, S. M., ALHIDARY, I. A., SULIMAN, G. M., ABDELRAHMAN, M. M., and AL-GARADI, M. A., 2022. Ionophores: their effects on ruminal fermentation, animal performance and carcass characteristics and meat quality. Advances in Animal and Veterinary Sciences.10, 2641-9. http://dx.doi.org/10.17582/journal.aavs/2022/10.12.2641.2649
ENSLEY, S. 2020. Ionophore use and toxicosis in cattle. Veterinary clinics of North America. Food animal practice. 36(3), 641-652. https://doi.org/10.1016/j.cvfa.2020.07.001
FREDERIKSEN, R. F., SLETTEMEÅS, J. S., GRANSTAD, S., LAGESEN, K., PIKKEMAAT, M. G., URDAHL, A. M., and SIMM, R., 2024. Polyether ionophore resistance in a one health perspective. Frontiers in Microbiology. 15, 1347490. https://doi.org/10.3389/fmicb.2024.1347490
GOLDER, H. M., and LEAN, I. J., 2016. A meta-analysis of lasalocid effects on rumen measures, beef and dairy performance, and carcass traits in cattle. Journal of Animal Science. 94(1), 306-326. https://doi.org/10.2527/jas.2015-9694
GUAN, H., WITTENBERG, K. M., OMINSKI, K. H., and KRAUSE, D. O., 2006. Efficacy of ionophores in cattle diets for mitigation of enteric methane. Journal of Animal Science. 84(7), 1896-1906. https://doi.org/10.2527/jas.2005-652
HANSEN, M., BJÖRKLUND, E., KROGH, K. A., and HALLING-SØRENSEN, B., 2009. Analytical strategies for assessing ionophores in the environment. TrAC Trends in Analytical Chemistry. 28(5), 21-533. https://doi.org/10.1016/j.trac.2009.01.008
HERSOM, M., THRIFT, T., and YELICH, J., 2014. The impact of production technologies used in the beef cattle industry. Ask IFAS, University of Florida. http://dx.doi.org/10.32473/edis-an272-2011
HUCZYŃSKI, A. 2012. Polyether ionophores—promising bioactive molecules for cancer therapy. Bioorganic & Medicinal Chemistry Letters. 22(23), 7002-7010. https://doi.org/10.1016/j.bmcl.2012.09.046
IPHARRAGUERRE, I. R., and CLARK, J. H., 2003. Usefulness of ionophores for lactating dairy cows: a review. Animal feed science and technology. 106: 39-57. https://doi.org/10.1016/S0377-8401(03)00065-8
ISLAM, M., and LEE, S. S., 2019. Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants. Journal of Animal Science and Technology. 61(3), 122. https://doi.org/10.5187/jast.2019.61.3.122
KUNKLE, W. E., JOHNS, J. T., POORE, M. H., and HERD, D. B., 2000. Designing supplementation programs for beef cattle fed forage-based diets. Journal of Animal Science. 77(1), 1-11. https://doi.org/10.2527/jas2000.00218812007700ES0012x
LI, G., DE OLIVEIRA, D. M., and WALKER, M. J., 2022. The antimicrobial and immunomodulatory effects of ionophores for the treatment of human infection. Journal of Inorganic Biochemistry. 227, 111661. https://doi.org/10.1016/j.jinorgbio.2021.111661
LIMEDE, A. C., MARQUES, R. S., POLIZEL, D. M., CAPPELLOZZA, B. I., MISZURA, A. A., BARROSO, J. P. R., and PIRES, A. V., 2021. Effects of supplementation with narasin, salinomycin, or flavomycin on performance and ruminal fermentation characteristics of Bos indicus Nellore cattle fed with forage-based diets. Journal of Animal Science. 99(4), skab005. https://doi.org/10.1093/jas/skab005
MARQUES, R. D. S., and COOKE, R. F., 2021. Effects of ionophores on ruminal function of beef cattle. Animals 11: 2871. https://doi.org/10.3390/ani11102871
MCGUFFEY, R. K., RICHARDSON, L. F., and WILKINSON, J. I. D., 2001. Ionophores for dairy cattle: current status and future outlook. Journal of Dairy Science. 84, E194-E203. https://doi.org/10.3168/jds.S0022-0302(01)70218-4
MOONEY, D., RICHARDS, K. G., DANAHER, M., GRANT, J., GILL, L., MELLANDER, P. E., and COXON, C.E.,2020. An investigation of anticoccidial veterinary drugs as emerging organic contaminants in groundwater. Sci Total Environ. 746: 141116. https://doi.org/10.1016/j.scitotenv.2020.141116
NILSSON, O., MYRENÅS, M., and ÅGREN, J., 2016. Transferable genes putatively conferring elevated minimum inhibitory concentrations of narasin in Enterococcus faecium from Swedish broilers. Veterinary Microbiology. 184, 80-3. https://doi.org/10.1016/j.vetmic.2016.01.012
OGUNADE, I., SCHWEICKART, H., ANDRIES, K., LAY, J., and ADEYEMI, J., 2018. Monensin Alters the Functional and Metabolomic Profile of Rumen Microbiota in Beef Cattle. Animals (Basel). 8(11): 211. https://doi.org/10.3390/ani8110211
PARKER, C. D., LISTER, S. A., and GITTINS, J., 2021. Impact assessment of the reduction or removal of ionophores used for controlling coccidiosis in the UK broiler industry. Veterinary Record. 189, (11). https://doi.org/10.1002/vetr.513
PATEL, M. B., GARRAD, E., MEISEL, J. W., NEGIN, S., GOKEL, M. R., and GOKEL, G. W., 2019. Synthetic ionophores as non-resistant antibiotic adjuvants. RSC Advances. 9(4), 2217-2230. https://doi.org/10.1039/C8RA07641C
POLIZEL, D. M., CAPPELLOZZA, B. I., HOE, F., LOPES, C. N., BARROSO, J. P., MISZURA, A., OLIVEIRA, G. B., GOBATO, L., and PIRES, A. V., 2020. Effects of narasin supplementation on dry matter intake and rumen fermentation characteristics of Bos indicus steers fed a high-forage diet. Translational Animal Science. 4(1), 118-128. https://doi.org/10.1093/tas/txz164
PRATHAP, P., CHAUHAN, S. S., LEURY, B. J., COTTRELL, J. J., and DUNSHE, A. F. R., 2021. Towards Sustainable Livestock Production: Estimation of Methane Emissions and Dietary Interventions for Mitigation. Sustainability. 13(11), 6081. https://doi.org/10.3390/su13116081
RODER, J. D. 2011. Ionophore toxicity and tolerance. Veterinary Clinics of North America: Food Animal Practice. 27(2), 305-314. https://doi.org/10.1016/j.cvfa.2011.02.012
RUSSELL, J. B., and HOULIHAN A. J., 2003. Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiology Reviews. 27(1), 65-74. https://doi.org/10.1016/S0168-6445(03)00019-6
SAUNOIS, M., JACKSON, R. B., BOUSQUET, P., POULTER, B., and CANADELL, J. G., 2016. The growing role of methane in anthropogenic climate change. Environmental Research Letters. 11(12), 120207. https://doi.org/10.1088/1748-9326/11/12/120207
SCHÄREN, M., DRONG, C., KIRI, K., RIEDE, S., GARDENER, M., MEYER, U., and DÄNICKE, S., 2017. Differential effects of monensin and a blend of essential oils on rumen microbiota composition of transition dairy cows. Journal of Dairy Science. 100(4), 2765-2783. https://doi.org/10.3168/jds.2016-11994
SOARES, V. M., PEREIRA, J. G., BARRETO, F., JANK, L., RAU, R. B., RIBEIRO, C. B., DOS SANTOS CASTILHOS, T., TOMASZEWSKI, C. A., HILLESHEIM, D. R., MONDADORI, R. G., and TADIELO, L. E., 2022. Residues of veterinary drugs in animal products commercialized in the border region of Brazil, Argentina, and Uruguay. Journal of food protection. 85(6), 980-986. https://doi.org/10.4315/JFP-21-415
SU, Z., MRDENOVIC, D., SEK S., and LIPKOWSKI J., 2020. Ionophore properties of valinomycin in the model bilayer lipid membrane 1. Selectivity towards a cation. Journal of Solid-State Electrochemistry. 24, 3125-3134. https://doi.org/10.1007/s10008-020-04777-x
TEDESCHI, L. O., CALLAWAY, T. R., MUIR, J. P., and ANDERSON, R. C., 2011. Potential environmental benefits of feed additives and other strategies for ruminant production. Revista Brasileira de Zootecnia. 40, 291-30. https://www.sbz.org.br/revista/artigos/66284.pdf
THOMAS, M., WEBB, M., GHIMIRE, S., BLAIR, A., OLSON, K., FENSKE, G. J., FONDER, A. T., CHRISTOPHER-HEN NINGS, J., BRAKE, D., and SCARIA, J., 2017. Metagenomic characterization of the effect of feed additives on the gut microbiome and antibiotic resistome of feedlot cattle. Scientific Reports. 7(1), 12257. https://www.nature.com/articles/s41598-017-12481-6
TSETEN, T., SANJORJO, R. A., KWON, M., KIM, and S. W., 2022. Strategies to mitigate enteric methane emissions from ruminant animals. Journal of Microbiology and Biotechnology. 32(3), 269. https://doi.org/10.4014/jmb.2202.02019
WANG, L., ZHANG, G., LI, Y., and ZHANG, Y., 2020. Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals. 10(2), 223. https://doi.org/10.3390/ani10020223
WARSI, O. M., UPTERWORTH, L. M., BREIDENSTEIN, A., LUSTIG, U., MIKKELSEN, K., NAGY, T., SZATMARI, D., INGMER, H., and ANDERSSON, D.I., 2024.Staphylococcus aureus mutants resistant to the feed-additive monensin show increased virulence and altered purine metabolism. Mbio 2024; 15(2): e03155-23. https://doi.org/10.1128/mbio.03155-23
WEIMER, P. J., STEVENSON, D. M., MERTENS, D. R., and THOMAS, E. E., 2008. Effect of monensin feeding and withdrawal on populations of individual bacterial species in the rumen of lactating dairy cows fed high-starch rations. Applied Microbiology and Biotechnology. 80(1), 135-145. https://doi.org/10.1007/s00253-008-1528-9
WEISS, C. P., BECK, P. A., GADBERRY, M. S., RICHESON, J. T., WILSON, B. K., ROBINSON, C. A., ZHAO, J., HESS, T., and HUBBELL, III. D., 2020. Effects of intake of monensin during the stocker phase and subsequent finishing phase on performance and carcass characteristics of finishing beef steers. Applied Animal Science. 36(5), 668-676. https://doi.org/10.15232/aas.2020-02031
WONG, A. 2019. Unknown risk on the farm: Does agricultural use of ionophores contribute to the burden of antimicrobial resistance? Msphere. 4(5), 10-128. https://doi.org/10.1128/msphere.00433-19