• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Indexing and Abstracting
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of Applied Veterinary Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 10 (2025)
Volume Volume 9 (2024)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 8 (2023)
Volume Volume 7 (2022)
Volume Volume 6 (2021)
Volume Volume 5 (2020)
Volume Volume 4 (2019)
Volume Volume 3 (2018)
Volume Volume 2 (2017)
Volume Volume 1 (2016)
Khalil, H., Mahmoud, M., Kotb, M., Eissa, A. (2024). Marine Pollution as a Trigger of Discoloration Phenomenon in The Hard Coral, Pocillopora Species at The Gulf of Aqaba, Red Sea, Egypt: Pathological and Molecular Evidences. Journal of Applied Veterinary Sciences, 9(4), 42-53. doi: 10.21608/javs.2024.302491.1369
Hania A. Khalil; Mahmoud A. Mahmoud; Mohammed M. A. Kotb; Alaa Eldin Eissa. "Marine Pollution as a Trigger of Discoloration Phenomenon in The Hard Coral, Pocillopora Species at The Gulf of Aqaba, Red Sea, Egypt: Pathological and Molecular Evidences". Journal of Applied Veterinary Sciences, 9, 4, 2024, 42-53. doi: 10.21608/javs.2024.302491.1369
Khalil, H., Mahmoud, M., Kotb, M., Eissa, A. (2024). 'Marine Pollution as a Trigger of Discoloration Phenomenon in The Hard Coral, Pocillopora Species at The Gulf of Aqaba, Red Sea, Egypt: Pathological and Molecular Evidences', Journal of Applied Veterinary Sciences, 9(4), pp. 42-53. doi: 10.21608/javs.2024.302491.1369
Khalil, H., Mahmoud, M., Kotb, M., Eissa, A. Marine Pollution as a Trigger of Discoloration Phenomenon in The Hard Coral, Pocillopora Species at The Gulf of Aqaba, Red Sea, Egypt: Pathological and Molecular Evidences. Journal of Applied Veterinary Sciences, 2024; 9(4): 42-53. doi: 10.21608/javs.2024.302491.1369

Marine Pollution as a Trigger of Discoloration Phenomenon in The Hard Coral, Pocillopora Species at The Gulf of Aqaba, Red Sea, Egypt: Pathological and Molecular Evidences

Article 6, Volume 9, Issue 4, October 2024, Page 42-53  XML PDF (575.55 K)
Document Type: Original Article
DOI: 10.21608/javs.2024.302491.1369
View on SCiNiTO View on SCiNiTO
Authors
Hania A. Khalil1; Mahmoud A. Mahmoud2; Mohammed M. A. Kotb3; Alaa Eldin Eissa email orcid 4
1Department of Aquatic Animal Medicine & Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
2Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
3Marine Science Department, Faculty of Science, Suez Canal University, 41511 - Ismailia, EGYPT
4Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
Receive Date: 07 July 2024,  Revise Date: 22 August 2024,  Accept Date: 24 August 2024 
Abstract
Hard corals are precious marine creatures that comprise a complex form of symbiosis between symbiont algae and coral holobiont. For decades, corals have been challenged by disastrous events of climatic and anthropogenic etiologies. Such complex interactions have resulted in devastating disease episodes among coral populations worldwide. There is a scarcity of information about diseases of hard corals in the Gulf of Aqaba, Red Sea, Egypt. Therefore, the current study aims to investigate various diseases of hard corals in this pristine habitat within the Red Sea. Whitening and dark green dots were the most noticeable morphopathology among hard coral samples collected from Gulf of Aqaba. Some human-based pathogens, such as Rothia kristinae, Cupriavidus pauculus, and Delftia acidovorans, were isolated from some of the examined coral tissues, while the Burkholderia cepacia group was isolated from the nearby sediment. The final identities of the above-mentioned bacterial isolates have been molecularly confirmed using 16S RNA sequence analysis. Pathologically, diseased corals have been observed with changes such as some forms of tissue losses, degenerative changes, and eosinophilic granular amoebocytes/agranular cells infiltration. The frequent detection of some microbial pathogens of human origin could suggest deleterious forms of environmental pollution of anthropogenic origin. Ultimately, the entire existence of hard coral populations is mostly threatened by swiftly erupting climatic changes as well as environmental aquatic pollution. Thus, the current study concludes the real need for extensive ecological, biological, pathological, and immunological studies to determine the eminent threats and propose possible control means for better/sustainable hard coral populations.
Keywords
Hard corals; Gulf of Aqaba; Red Sea; Pollution; Coral diseases; coral discoloration; Molecular screening
Main Subjects
Fish and aquatic medicine
References
AEBY, G. S., WORK, T. M., RAJ, K. D., GILBERT, M., and PATTERSON, E., 2017. Manual for Coral Disease Research. Suganthi Devadason Marine Research Institute (SDMRI), Special Research Publication No.14, 53p.

AINSWORTH, T. D., KVENNEFORS, E. C., BLACKALL, L. L., FINE, M., and HOEGH-GULDBERG, O., 2007. Disease and cell death in white syndrome of Acroporid corals on the Great Barrier Reef. Marine Biology, 151(1), 19–29. https://doi.org/10.1007/s00227-006-0449-3

ALI, AH. A. M., HAMED, M. A., and ABD EL-AZIM, H., 2011. Heavy metals distribution in the coral reef ecosystems of the Northern Red Sea. Helgoland Marine Research, 65(1), 67–80. https://doi.org/10.1007/s10152-010-0202-7

AMMAR, M. S. A., ASHOUR, F., and ABDELAZIM, H., 2013. Coral disease distribution at Ras Mohammed and the Gulf of Aqaba, Red Sea, Egypt. Nusantara Bioscience, 5(1).‏ https://doi.org/10.13057/nusbiosci/n050106

BALADA-LLASAT, J. M., ELKINS, C., SWYERS, L., BANNERMAN, T., and PANCHOLI, P., 2010. Pseudo-outbreak of Cupriavidus pauculus infection at an outpatient clinic related to rinsing culturette swabs in tap water. Journal of clinical microbiology, 48(7), 2645–2647. https://doi.org/10.1128/JCM.01874-09

BIELMYER, G. K., GROSELL, M., BHAGOOLI, R., BAKER, A. C., LANGDON, C., GILLETTE, P., and CAPO, T. R., 2010. Differential effects of copper on three species of scleractinian corals and their algal symbionts (Symbiodinium spp.), Aquatic Toxicology, Volume 97, Issue 2, 2010, Pages 125-133, ISSN 0166-445X, https://doi.org/10.1016/j.aquatox.2009.12.021

BILGIN, H., SARMIS, A., TIGEN, E., SOYLETIR, G., and MULAZIMOGLU, L., 2015. Delftia acidovorans: a rare pathogen in immunocompetent and immunocompromised patients. Canadian Journal of Infectious Diseases and Medical Microbiology, 26(5), 277-279. https://doi.org/10.1155/2015/973284

BOURNE, D. G.,  and  MUNN, C. B., 2005. Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environmental Microbiology, 7(8), 1162–1174. https://doi.org/10.1111/j.1462-2920.2005.00793.x

BRUCKNER, A. W. 2015. History of coral disease research. Diseases of coral, 52-84. https://doi.org/10.1002/9781118828502.ch5

BRUNO, D. W., NOWAK, B., and ELLIOTT, D. G., 2006. Guide to the identification of fish protozoan and metazoan parasites in stained tissue sections. Diseases of aquatic organisms, 70(1-2), 1-36.‏ https://doi.org/10.3354/dao070001

CAUDURO, G. P., LEAL, A. L., MARMITT, M., DE ÁVILA, L. G., KERN, G., QUADROS, P. D., MAHENTHIRALINGAM, E., and VALIATI, V. H., 2021. New benzo(a)pyrene-degrading strains of the Burkholderia cepacia complex prospected from activated sludge in a petrochemical wastewater treatment plant. Environmental monitoring and assessment, 193(4), 163. https://doi.org/10.1007/s10661-021-08952-z

DAR, M. A., SOLIMAN, F. A., and Abd ALLAH, I. M., 2018. The Contributions of Flashfloods on the Heavy Metals Incorporations Within the Coral Skeletons at Gulfs of Suez and Aqaba, Egypt. International Journal of Ecotoxicology and Ecobiology. Vol. 3, No. 1, pp. 11-16. https://doi.org/10.11648/j.ijee.20180301.13

DUDEJA, M., TEWARI, R., DAS, A. K., and NANDY, S., 2013. Kocuria kristinae in catheter associated urinary tract infection: a case report. Journal of clinical and diagnostic research: JCDR, 7(8), 1692–1693. https://doi.org/10.7860/JCDR/2013/6077.3247

EISSA, A. E., and  ZAKI, M. M., 2011. The impact of global climatic changes on the aquatic environment. Procedia Environmental Sciences, 4, 251-259.‏ https://doi.org/10.1016/j.proenv.2011.03.030

FAIRFAX, M. R., and SALIMNIA, H., 2013. Diagnostic molecular microbiology: a 2013 snapshot. Clinics in laboratory medicine, 33(4), 787–803. https://doi.org/10.1016/j.cll.2013.08.003

HALL, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series. 41,95-98. https://doi.org/10.14601/Phytopathol_Mediterr-14998u1.29

HASSAN, R. M., BASSIOUNY, D. M., and MATAR, Y., 2016. Bacteremia Caused by Kocuria kristinae from Egypt: Are There More? A Case Report and Review of Literature. Case reports in infectious diseases, 2016, 6318064. https://doi.org/10.1155/2016/6318064

HAWTHORN, A., BERZINS, I. K., DENNIS, M. M., KIUPEL, M., NEWTON, A. L., PETERS, E. C., REYES, V. A., and WORK, T. M., 2023. An introduction to lesions and histology of scleractinian corals. Veterinary pathology, 60(5), 529–546. https://doi.org/10.1177/03009858231189289

KUMAR, S., STECHER, G., LI, M., KNYAZ, C., and TAMURA, K., 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35(6), 1547. ‏https://doi.org/10.1093/molbev/msy/096

LI, J., and ZHANG, S., 2020. Kocuria coralli sp. Nov., a novel actinobacterium isolated from coral reef seawater. International Journal of Systematic and Evolutionary Microbiology, 70(2). https://doi.org/10.1099/ijsem.0.003825

MAHENTHIRALINGAM, E., BALDWIN, A., and DOWSON, C. G., 2008. Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. Journal of applied microbiology, 104(6), 1539-1551.‏ https://doi.org/10.1111/j.1365-2672.2007.03706.x

MERA, H., and BOURNE, D. G., 2018. Disentangling causation: complex roles of coral‐associated microorganisms in disease. Environmental microbiology, 20(2), 431-449.‏ https://doi.org/10.1111/1462-2920.13958

MERON, D., ATIAS, E., IASUR KRUH, L., ELIFANTZ, H., MINZ, D., FINE, M., and BANIN, E., 2011. The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME Journal, 5(1), 51–60. https://doi.org/10.1038/ismej.2010.102

NEAVE, M. J., APPRILL, A., AEBY, G., MIYAKE, S., and VOOLSTRA, C. R., 2019. Microbial Communities of Red Sea Coral Reefs (pp. 53–68). https://doi.org/10.1007/978-3-030-05802-9_4

NOAA, 2019. Coral reef ecosystems. National Ocean Service website,:https://oceanservice.noaa.gov/education/resource-collections/marine-life/coral-reef-ecosystems.html,1/02/19

NOUIOUI, I., CARRO, L., GARCÍA-LÓPEZ, M., MEIER-KOLTHOFF, J. P., WOYKE, T., KYRPIDES, N. C., PUKALL, R., KLENK, H. P., GOODFELLOW, M., and GÖKER, M., 2018. Genome-Based Taxonomic Classification of the Phylum Actinobacteria. Frontiers in microbiology, 9, 2007. https://doi.org/10.3389/fmicb.2018.02007

PAN, Y., GAO, S. H., GE, C., GAO, Q., HUANG, S., KANG, Y., LUO, G., ZHANG, Z., FAN, L., ZHU, Y., and WANG, A., 2023. Removing microplastics from aquatic environments: A critical review. Environmental Science and Ecotechnology, 100222. https://doi.org/10.1016/j.ese.2022.100222

PINCUS, D. H. 2006. Microbial identification using the bioMérieux Vitek® 2 system. Encyclopedia of Rapid Microbiological Methods. Bethesda, MD: Parenteral Drug Association, 1-32.

PORTER, J. W., DUSTAN, P., JAAP, W. C., PATTERSON, K. L., KOSMYNIN, V., MEIER, O. W., PATTERSON, M. E., and PARSONS, M., 2001. Patterns of spread of coral disease in the Florida Keys. In: Porter JW (eds) The Ecology and Etiology of Newly Emerging Marine Diseases. Developments in Hydrobiology, vol 159. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3284-0_1

PRICE, K. L., and PETERS, E. C., 2018. Histological Techniques for Corals. Ebook. Kathy L Price, Annapolis, MD, and Esther C Peters, Annandale, VA.

RENZI, J. J., SHAVER, E. C., BURKEPILE, D. E., and SILLIMAN, B. R., 2022. The role of predators in coral disease dynamics. In Coral Reefs. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00338-022-02219-w

ROBERTS, R. J., SMAIL, D. A., and MUNRO, E. S., 2012. Laboratory methods, p 439–481. In Roberts RJ (ed), Fish pathology, 4th ed, Wiley-Blackwell, Oxford, United Kingdom.

RODRÍGUEZ-GÓMEZ, C., DURÁN-RIVEROLL, L. M., OKOLODKOV, Y. B., OLIART-ROS, R. M., GARCÍA-CASILLAS, A. M., and CEMBELLA, A. D., 2021. Diversity of Bacterioplankton and Bacteriobenthos from the Veracruz Reef System, Southwestern Gulf of Mexico. Microorganisms, 9(3), 619. https://doi.org/10.3390/microorganisms9030619

ROSENBERG, E., KOREN, O., RESHEF, L., EFRONY, R., and ZILBER-ROSENBERG, I., 2007. The role of microorganisms in coral health, disease, and evolution. In Nature Reviews Microbiology (Vol. 5, Issue 5, pp. 355–362). https://doi.org/10.1038/nrmicro1635

SIMPSON, S. 2020. A Pilot Study of the Barbadian Reef Microbiome: New Approaches for Comparative Analyses. Doctoral dissertation, Concordia University.

STYKOVÁ, E., NEMCOVÁ, R., GANCARČÍKOVÁ, S., VALOCKÝ, I., and LAUKOVÁ, A., 2016. Bovine vaginal strain Kocuria kristinae and its characterization. Folia microbiologica, 61(3), 243–248. https://doi.org/10.1007/s12223-015-0431-x

SUTHERLAND, K. P., PORTER, J. W., and TORRES, C., 2004. Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Marine Ecology Progress Series, 266, 273–302. https://doi.org/10.3354/meps266273

VAN OPPEN, J. H., and BLACKALL, L. L., 2019. Coral microbiome dynamics, functions, and design in a changing world. Nature Reviews Microbiology, 17(9), 557–567. https://doi.org/10.1038/s41579-019-0223-4

VIAL, L., CHAPALAIN, A., GROLEAU, M. C., and DÉZIEL, E., 2011. The various lifestyles of the Burkholderia cepacia complex species: a tribute to adaptation. Environmental Microbiology, 13(1), 1-12.‏ https://doi.org/10.1111/j.1462-2920.2010.02343.x

WEISBURG, W. G., BARNS, S. M., PELLETIER, D. A., and LANE, D. J., 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of bacteriology, 173(2), 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991

WINKLER, R., ANTONIUS, A., and RENEGAR, D. A., 2004. The skeleton eroding band disease on coral reefs of Aqaba, red sea. Marine Ecology, 25(2), 129–144. https://doi.org/10.1111/j.1439-0485.2004.00020.x

WOODLEY, C. M., BRUCKNER, A. W., and MCLENON, A. L., 2008. Field Manual for the Investigation of Coral Disease Outbreaks. NOAA Technical Memorandum NOS NCCOS 80 and CRCP 6. National Oceanic and Atmospheric Administration, Silver Spring, MD 85pp.

WORK, T. M., and AEBY, G. S., 2006. Systematically describing gross lesions in corals. 70, 155–160. https://doi.org/10.3354/dao070155

WORK, T. M., and AEBY, G. S., 2014. Microbial aggregates within tissues infect a diversity of corals throughout the Indo-Pacific. Marine Ecology Progress Series, 500, 1-9.‏ https://doi.org/10.3354/MEPS10698

WORK, T. M. 2012. Collecting corals for histopathology. A practical guide. Madison, WI: U.S. Geological Survey National Wildlife Health Center.

WORMS EDITORIAL BOARD, 2023. World Register of Marine Species. Available from https://www.marinespecies.org at VLIZ. Accessed 2023-03-08. https://doi.org/10.14284/170

ZENG, W., ZHANG, S., XIA, M., WU, X., QIU, G., and SHEN, L., 2020. Insights into the production of extracellular polymeric substances of Cupriavidus pauculus 1490 under the stimulation of heavy metal ions. RSC advances, 10(34), 20385-20394. https://doi.org/10.1039/c9ra10560c

ZHOU, Z., YU, X., TANG, J., WU, Y., WANG, L., and HUANG, B., 2018. Systemic response of the stony coral Pocillopora damicornis against acute cadmium stress. Aquatic Toxicology, 194, 132-139.‏ https://doi.org/10.1016/j.aquatox.2017.11.013

ZIEGLER, M., ROIK, A., PORTER, A., ZUBIER, K., MUDARRIS, M. S., ORMOND, R., and VOOLSTRA, C. R., 2016. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Marine Pollution Bulletin, 105(2), 629–640. https://doi.org/10.1016/J.MARPOLBUL.2015.12.045

Statistics
Article View: 567
PDF Download: 604
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.