• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Indexing and Abstracting
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of Applied Veterinary Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 10 (2025)
Volume Volume 9 (2024)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 8 (2023)
Volume Volume 7 (2022)
Volume Volume 6 (2021)
Volume Volume 5 (2020)
Volume Volume 4 (2019)
Volume Volume 3 (2018)
Volume Volume 2 (2017)
Volume Volume 1 (2016)
Al-awadhi, R., Kilany, O., Abdallah, O., Naguib, F., Nageh, H. (2024). Neuroprotective Effects of Grape Seed Extract against Cadmium Toxicity in Broilers. Journal of Applied Veterinary Sciences, 9(3), 86-101. doi: 10.21608/javs.2024.293367.1344
Rana M. Al-awadhi; Omnia E. Kilany; Osama M. Abdallah; Fatma M. Naguib; Heba Nageh. "Neuroprotective Effects of Grape Seed Extract against Cadmium Toxicity in Broilers". Journal of Applied Veterinary Sciences, 9, 3, 2024, 86-101. doi: 10.21608/javs.2024.293367.1344
Al-awadhi, R., Kilany, O., Abdallah, O., Naguib, F., Nageh, H. (2024). 'Neuroprotective Effects of Grape Seed Extract against Cadmium Toxicity in Broilers', Journal of Applied Veterinary Sciences, 9(3), pp. 86-101. doi: 10.21608/javs.2024.293367.1344
Al-awadhi, R., Kilany, O., Abdallah, O., Naguib, F., Nageh, H. Neuroprotective Effects of Grape Seed Extract against Cadmium Toxicity in Broilers. Journal of Applied Veterinary Sciences, 2024; 9(3): 86-101. doi: 10.21608/javs.2024.293367.1344

Neuroprotective Effects of Grape Seed Extract against Cadmium Toxicity in Broilers

Article 11, Volume 9, Issue 3, July 2024, Page 86-101  XML PDF (651.2 K)
Document Type: Original Article
DOI: 10.21608/javs.2024.293367.1344
View on SCiNiTO View on SCiNiTO
Authors
Rana M. Al-awadhi1; Omnia E. Kilany email 2; Osama M. Abdallah2; Fatma M. Naguib2; Heba Nageh3
1Department of Science, The Public Authority for Applied Education and Training (PAAET), Collage of Basic Education, Kuwait
2Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
3Department of Histology, Faculty of Science, Suez Canal University, Egypt
Receive Date: 28 May 2024,  Revise Date: 20 June 2024,  Accept Date: 24 June 2024 
Abstract
Ration contamination with cadmium chloride (CdCl2) leads to serious economic loss. The current study aimed to explain the ameliorative effect of grape seed extract (GSE) either alone or in combination with CdCl2. One hundred and fifty chicks were used in the current study. They were equally alienated into 6 groups; group I was kept as control. Group II: given grape seed extract by the first dose (GSE1) of 250 mg/kg; group III: given grape seed extract by the second dose (GSE2) of 500 mg/kg; group IV: given cadmium chloride (CdCl2) to evaluate the undesirable effects of the dose (100 mg/kg diet). Group V: given combination of GSE1+ CdCl2, group VI: given combination of GSE2+ CdCl2. At the end of the 3rd and 5th weeks, the following parameters were measured: Serum oxidants and antioxidants (GSH, SOD, CAT and MDA), brain oxidants and antioxidants (SOD, CAT, MDA, and NO), semi-quantitative RT-PCR detection of brain and liver GST and GPx, as well as serum cytokines (IL-1β, IL-10, and TNF-α), were determined. The results put on display show that GSE extract considerably ameliorated the levels of serum and tissue oxidants and antioxidants, as well as cytokines that ramshackle CdCl2. Histopathological assessment of brain tissue and BAX brain sections was in concurrence with the immunological, oxidant, antioxidant, and RT-PCR results. It is important to take into consideration that the immunostimulant, antioxidative properties of GSE are mechanistically achieved. So, GSE could be used as a protective agent against ration contamination.
Keywords
Antioxidant; Brain; Broilers; Cadmium chloride; Cytokines; Grape seed extract
Main Subjects
Pathology and clinical pathology
References
ABDOU, H., and WAHBY, M., 2016. Neuroprotection of grape seed extract and pyridoxine against triton-induced neurotoxicity. Oxidative medicine and cellular longevity. Volume 2016 |Article ID 8679506. https://doi.org/10.1155/2016/8679506

ABEDI, H., JAHROMI, H., SADEGHI, N., AMJADI, S., and JAHROMI, Z., 2016. Evaluating the effect of aqueous extract of the roots of native edible asparagus in Iran (Asparagus officinalis L) on the concentration of liver factors in male rats treated with cadmium chloride. Journal of Fundamental and Applied Sciences 8 (4): 2008. http://dx.doi.org/10.4314/jfas.v8i2s.161

ABU, H.S., and IBRAHIM, S., 2018. Effect of dietary polyphenol-rich grape seed on growth performance, antioxidant capacity and ileal microflora in broiler chicks. J. Anim Physiol Anim Nutr.; 102:268– 275. https://doi.org/10.1111/jpn.12688

AKDIS, M., BURGLER, S., CRAMERI, R., EIWEGGER, T., FUJITA, H., GOMEZ, E., KLUNKER, S., MEYER, N., O'MAHONY, L., PALOMARES, O., RHYNER, C., OUAKED, N., SCHAFFARTZIK, A., VAN, DE, VEEN, W., ZELLER, S., ZIMMERMANN, M., and AKDIS, C.A., 2011. Interleukins, from 1 to 37, and interferon-γ:  receptors, functions, and roles in diseases. J Allergy Clin Immunol. 127(3):701-21. https://doi.org/10.1016/j.jaci.2010.11.050

ALAGAWANY, M., MAHROSE, K., and ABOU-KASSEM, D., 2016. The role of vitamin E or clay in growing Japanese quail fed diets polluted by cadmium at various levels. Animal 10:508–519. https://doi.org/10.1017/S1751731115002578.

ALKHEDAIDE, A. 2015. The Anti-inflammatory effect of grape seed extract in rats exposed to Cadmium Chloride toxicity. International Journal of Advanced Research. (3), 7, 298-305. https://www.researchgate.net/publication/295704231_The_Anti-inflammatory_effect_of_grape_seed_extract_in_rats_exposed_to_Cadmium_Chloride_toxicity

ALKHEDAIDE, A., ALSHEHRI, Z.S., SABRY, A., ABDEL-GHAFFAR, T., SOLIMAN, M.M., and ATTIA, H., 2016. Protective effect of grape seed extract against cadmium induced testicular dysfunction. Mol Med Rep, 13(4): 3101-3109.https://doi.org/10.3892/mmr.2016.4928

ANKE, L., 2023. The Role of Glutathione and Sulfhydryl Groups in Cadmium Uptake by Cultures of the Rainbow Trout RTG-2 Cell Line, 12 (23): 2720. https://doi.org/10.3390/cells12232720

ARAFAT, E., and SHABAAN, D., 2019. The possible neuroprotective role of grape seed extract on the histopathological changes of the cerebellar cortex of rats prenatally exposed to Valproic Acid: Animal model of autism. Acta histochemica, 121(7), 841–851. https://doi.org/10.1016/j.acthis.2019.08.002

ARIGA, T. 2004. The antioxidative function, preventive action on disease and utilization of proanthocyanidins. Biofactors, 21(1–4), 197–201. https://doi.org/10.1002/biof.552210140

ARROYO, V., FLORES, K., ORTIZ, L., GÓMEZ-QUIROZ, L., and GUTIÉRREZ-RUIZ, M., 2013. Liver and cadmium toxicity. Journal of Drug Metabolism and Toxicology, S5 (001). http://dx.doi.org/10.4172/2157-7609.S5-001

ASL, H.A., and HOSSEINZADEH, H., 2009. Review of the pharmacological effects of Vitis vinifera (Grape) and its bioactive compounds. Phytotherapy Research (23), 9, 1197-1204. https://doi.org/10.1002/ptr.2761

ASMAA, F.K., MOHAMED, E.A., AYMAN E.T., SHAABAN S.E., and MAHMOUD, A., 2019. The potential modulatory role of herbal additives against Cd toxicity in human, animal, and poultry. Environmental Science and Pollution. Research volume 26, 4588–4604. https://doi.org/10.1007/s11356-018-4037-0

AYOUB, M., ELFEIL, W., EL BORAEY, D., HAMMAM, H., and NOSSAIR, M. 2019. Evaluation of Some Vaccination Programs in Protection of Experimentally Challenged Broiler Chicken against Newcastle Disease Virus. American Journal of Animal and Veterinary Sciences, 14(3), 197-206. https://doi.org/10.3844/ajavsp.2019.197.206

BAGCHI, D., SWAROOP, A., PREUSS, H., and BAGCHI, M., 2014. Free radical scavenging, antioxidant and cancer chemoprevention by grape seed proanthocyanidin: an overview. Mutat Res, 768 69-73. https://doi.org/10.1016/j.mrfmmm.2014.04.004

BAIOMY, A. 2016. Protective Role of Grape Seeds Extract against Cadmium Toxicity in the Lung of Male Wistar Rats. J Cytol Histol S5. http://dx.doi.org/10.4172/2157-7099.1000S5:004

BALU, M., SANGEETHA, P., HARIPRIYA, D., and PANNEERSELVAMI, C., 2005. Rejuvenation of antioxidant system in central nervous system of aged rats by grape seed extract. Neurosci. Lett. 383, 295–300. https://doi.org/10.1016/j.neulet.2005.04.042

BANCROFT, J.D., and COOK, H.C., 1994. Manual of histological techniques and their diagnostic applications. Edinburg New York, Churchill living stone.

BERGLUND, M., LARSSON, K., and GRANDÉR, M., 2015. Exposure determinants of cadmium in European mothers and their children. Environ Res.2015; 141:64–76. https://doi.org/10.1016/j.envres.2014.09.042

BERTIN, G., and AVERBECK, D., 2006. Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review), Biochimie, 88 1549-1559. https://doi.org/10.1016/j.biochi.2006.10.001

BO, W., and YANLI, D., 2013. Cadmium and its neurotoxic effects. Oxidative Medicine and Cellular Longevity 2013: 898034. https://doi.org/10.1155/2013/898034

BRENES, A., VIVEROS, A., SAURA, C., and ARIJA, I., 2016. Use of Polyphenol- rich grape by-products in monogastric nutrition. Anim. Feed Sci.Technol. 1.1-17. http://dx.doi.org/10.1016/j.anifeedsci.2015.09.016

CASALINO, E., CALZARETTI, G., SBLANO, C., and LANDRISCINA, C., 2002. Molecular inhibitory mechanisms of antioxidant enzymes in rat liver and kidney by cadmium. Toxicology; 179(1- 2):37-50. https://doi.org/10.1016/s0300-483x(02)00245-7

CHELIKANI, P., FITA, I., and LOEWEN, P., 2004. Diversity of structures and properties among catalases. Cell. Mol. Life Sci. CMLS 2004, 61, 192–208. https://doi.org/10.1007/s00018-003-3206-5

CHEN, C., KOBAYASHI, T., IIJIMA, K., HSU, F., and KITA, H., 2017. IL-33 dysregulates regulatory T cells and impairs established immunologic tolerance in the lungs. J Allergy Clin Immunol. 140:1351– 1363 e1357 https://doi.org/10.1016/j.jaci.2017.01.015

CHEN, Q., ZHANG, R., LI, W.M., NIU, Y.I., and GUO, H.C., 2013. The protective effect of grape seed procyanidin extract against cadmium induced renal oxidative damage in mice. Environmental Toxicology and Pharmacology 36:759-768. https://doi.org/10.1016/j.etap.2013.07.006

CHENG, M., GAO, H., XU, L., LI, B., and ZHANG, H., 2007. Cardioprotective effects of grape seed proanthocyanidins extracts in streptozocin induced diabetic rats. J Cardiovascular Pharmacology 50: 503-509. https://doi.org/10.1097/fjc.0b013e3181379ef6

CINAR, M. 2003. Cadmium and effects at biological system.  Veterinarium, 14:79-84. https://www.researchgate.net/publication/288264032_Cadmium_and_effects_at_biological_system.

COS, P., DE, BRUYNE, N., HERMANS, S., APERS, D., BERGHE, V., and VLIETINK, A.J., 2003. Proanthocyanidins in health carecurrent and new trends.Curr. Med. Chem., 10:1345 –1359. https://doi.org/10.2174/0929867043365288

DHAMA, K., KARTHIK, K., REKHA, K., FARAG, M., DADAR, M., and KUMAR, S., 2018. Medicinal and Therapeutic Potential of Herbs and Plant Metabolites / Extracts Countering Viral Pathogens-Current Knowledge and Future Prospect. Current Drug Metabolism,19, 3, 236-263 (28). https://doi.org/10.2174/1389200219666180129145252

DUKIC-COSIC, D., BARALIC, K., JAVORAC, D., DJORDJEVIC, A.B., and BULAT, Z., 2020. An overview of molecular mechanisms in cadmium toxicity. Curr. Opin. Toxicol. 19, 56–62. https://doi.org/10.1016/j.cotox.2019.12.002.

DUNCAN, D.B. 1955. Multiple range and multiple F tests. Biometrics, 11, 1–41.

EL GENGAIHI, S., HASSAN, E., ABOUL-ELLA, F., SHALABY, E., and ABOU BAKER D., 2014. Antioxidant Activity of Phenolic Compounds from Different Grape Wastes Baker J Food Process Technol 5, 1-5. http://dx.doi.org/10.4172/2157-7110.1000296

EL-BOSHY, M., RISHA, E., ABDELHAMID, F., MUBARAK, M., and HADDA, T., 2015. Protective effects of selenium against cadmium induced hematological disturbances, immunosuppressive, oxidative stress and hepatorenal damage in rats. J Trace Elem Med Biol. Jan; 29:104-10. https://doi.org/10.1016/j.jtemb.2014.05.009

EL-TARRAS, ADEL, H.F., ATTIA, M.M., SOLIMAN, M.A., EL AWADY, and AMIN, A. A., 2016. Neuroprotective effect of grape seed extract against cadmium toxicity in male albino rats, Int J Immunopathol Pharmacol, 29 (2016) 398-407. https://doi.org/10.1177/0394632016651447

FANG, C., XIE, L., LIU, C., FU, C., YE, W., LIU, H., and ZHANG, B., 2018. Tanshinone IIA improves hypoxic ischemic encephalopathy through TLR-4-mediated NF-κB signal pathway. Molecular medicine reports, 18(2), 1899–1908.  https://doi.org/10.3892/mmr.2018.9227

FILOMENA, G., OTTAVIANO, DIANE, E., HANDY, and JOSEPH, LOSCALZO, 2008. Redox Regulation in the Extracellular Environment. Circulation Journal, 1-16. https://doi.org/10.1253/circj.72.1

FLEURY, C., B., MIGNOTTE, J. and VAYSSIERE, L., 2002. Mitochondrial reactive oxygen species in cell death signaling, Biochimie, 131-141 https://doi.org/10.1016/s0300-9084(02)01369-x

GREEN, D.R., and REED,J.C., 1998. Mitochondria and apoptosis. Science, 28; 281(5381):1309-12. https://doi.org/10.1126/science.281.5381.1309

HAGERMAN., A., RIEDL., K., JONES, G., SOVIK, K, RITCHARD, N, HARTZFELD, P, and RIECHEL, T., 1998. High molecular weight plant polyphenolics (tannins) as biological antioxidants, Journal of Agricultural and Food Chemistry, 46 1887-1892. https://doi.org/10.1021/jf970975b.

HANAA, M. H., MAGDA, M., and HEMDAN, I. M. 2015. Chemical studies and phytochemical screening of grape seeds (Vitis Vinifera L). Minia J. of Agric. Res. & Develop.  (35), 2, 313-325. https://www.researchgate.net/publication/337007371_Chemical_studies_and_phytochemical_screening_of_Grape_seeds_Vitis_Vinifera_L.

HASHEM, M., IBTISAM, M., GAMAL, EL-DIN, and SHIMAA, N.A., ELTAHAWY, 2019. Clinicopathological Studies on the Ameliorative Effects of Selenium and Vitamin E against Cadmium Toxicity in Chickens Zag Vet J, 47, (3), 277-287. https://doi.org/10.21608/zvjz.2019.13192.1045

HAYDEN, E., YAMIN, G., BEROUKHIM, S., CHEN, B., KIBALCHENKO, M., JIANG, L., HO, L., WANG, L., PASINETTI, G., and TEPLOW, D., 2015. Inhibiting amyloid beta-protein assembly: Size-activity relationships among grape seed-derived polyphenols, J Neurochem, 135 416-430. https://doi.org/10.1111/jnc.13270

IQBAL, Z., KAMRAN, Z., SULTAN, J., ALI, A., AHMAD, S., SHAHZAD, M., AHSAN, U., ASHRAF, S., and SOHAIL, M., 2015. Replacement effect of vitamin E with grape polyphenols on antioxidant status, immune, and organs histopathological responses in broilers from 1 to 35-d age. J. Appl. Poult. Res., 24:127–134. https://doi.org/10.3382/japr/pfv009.

JACOB, R., and BURRI, B., 1996. Oxidative damage and defense. American Journal of Clinical Nutrition 63: 985–990. https://doi.org/10.1093/ajcn/63.6.985.

JIN, Y., LIU, L., ZHANG, S., HE, R., WU, Y., CHEN, G., and FU, Z., 2016. Cadmium exposure to murine macrophages decreases their inflammatory responses and increases their oxidative stress, Chemosphere, 144 168-175. https://doi.org/10.1016/j.chemosphere.2015.08.084

JONES, D.P. 1982. Intracellular catalase function: Analysis of the catalatic activity by product formation in isolated liver cells. Arch. Biochem. Biophys. 214, 806–814. https://doi.org/10.1016/0003-9861(82)90087-X

KAUR, M., VELMURUGAN, B., RAJAMANICKAM S., AGARWAL, R., and AGARWAL, C., 2009. Gallic acid, an active constituent of grape seed extract, exhibits anti-proliferative, pro-apoptotic and anti-tumorigenic effects against prostate carcinoma xenograft growth in nude mice, Pharm Res, 26 2133-2140. https://doi.org/10.1007/s11095-009-9926-y

KAYA, S., PIRINCCI, I., TRAS B., UNSAL, A., BILGILI, A., AKAR, F., DOGAN, A., and YARSAN, E., 2002. Metals, Other Inorganic vet Radioactive Agents. In: Toxicology in Veterinary Medicine, 2nd Edn. Medisan Press. Ankara. pp. 207-250.

KUMAR, V., KUMAR. S., TIWARI, M., and CHAN F., 2006. Auction-based approach to resolve the scheduling problem in the steel making process. International Journal of Production Research, 44, 8. P. 1503- 1522. http://dx.doi.org/10.1080/00207540500434713

LAG, M., RODIONOV, D, OVREVIK, J, BAKKE, O, SCHWARZE, P, and REFSNES, M, 2010. Cadmium-induced inflammatory responses in cells relevant for lung toxicity: Expression and release of cytokines in fibroblasts, epithelial cells and macrophages, Toxicology letters, 193 252-260. https://doi.org/10.1016/j.toxlet.2010.01.015

LINGYU, YANG,  DEHAI, XIAN,  XIA, XIONG,  RUI, LAI,  JING, SONG, and JIANQIAO, ZHONG, 2018. Proanthocyanidins against Oxidative Stress: From Molecular Mechanisms to Clinical Applications. Biomed Res Int. https://doi.org/10.1155/2018/8584136

LIU, J., SHEN, H., and ONG, C., 2001. Role of intracellular thiol depletion, mitochondrial dysfunction and reactive oxygen species in Salvia miltiorrhiza-induced apoptosis in human hepatoma HepG2 cells. Life sciences, 69 (16), 1833–1850. https://doi.org/10.1016/s0024-3205(01)01267-x

LIU, J., YAN, L., CAO, C., HU, D., and ZHANG, F., 2020. Effects of absorbents on growth performance, blood profiles and liver gene expression in broilers fed diets naturally contaminated with aflatoxin. Asian- Australas J Anim Sci. (33), 2:294-304. https://doi.org/10.5713/ajas.18.0870

LIU. J., QIAN, S, GUO, Q., JIANG, J, WAALKES, M, MASON, R., and KADIISKA, M., 2008. Cadmium generates reactive oxygen- and carbon-centered radical species in rats: insights from in vivo spin-trapping studies, Free Radic Biol Med, 45 475-481. https://doi.org/10.1016/j.freeradbiomed.2008.04.041

LOPEZ, E., FIGUEROA, S., OSET-GASQUE, M.J., and GONZALEZ, M.P., 1998. Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. Br J Pharmacol, 138: 901-11. https://doi.org/10.1038%2Fsj.bjp.0705111

MARANGONI, F., GIOVANNI, C, CRICELLI, C., FERRARA, N, GHISELLI, A., LUCCHIN, L., and POLI, A., 2015. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: ِn Italian consensus document Food & Nutrition Research 2015, 59: 27606. https://doi.org/10.3402/fnr.v59.27606

MIELNICK, M., OLSEN, E., VOGT, G., ADELIN,E D., and SKREDE, G., 2006. Grape seed extract as antioxidant in cooked, cold stored turkey meat. LWT Food Science and Technology, 39, 191–198. https://doi.org/10.4161/tisb.26882

MIZEE, M. R., and DE VRIES, H. E., 2013. Blood-brain barrier regulation: environmental cues controlling the onset of barrier properties. Tissue Barriers 1: e26882. https://doi.org/10.4161/tisb.26882

MOHAMMED, I. Y., ELMALLAH, MANAL, F., ELKHADRAGY, EBTESAM, M., AL-OLAYAN, and AHMED, E., ABDEL MONEIM, 2017. Protective Effect of Fragaria ananassa Crude Extract on Cadmium-Induced Lipid Peroxidation, Antioxidant Enzymes Suppression, and Apoptosis in Rat Testes. nt J Mol Sci. 18(5): 957. https://doi.org/10.3390/ijms18050957

MOITRA, S., BRASHIER, B. B., and SAHU, S., 2014. Occupational cadmium exposure-associated oxidative stress and erythrocyte fragility among jewelry workers in India, Am J Ind Med, 57 (9) 1064–1072. https://doi.org/10.1002/ajim.22336

MURRAY, M. 1995. Grape seed extract and other sources of procyanidolic oligomers. In: The healing power of herbs. 2nd ed. Prima Publishing.

NARJES, S. A., PARVIN, K., and VAHID, N., 2018. The Effect of Cadmium on Apoptotic Genes mRNA Expression of Bax and Bcl-2 in Small Intestine of Rats. Iran J Pathol. 13(4): 408–414. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc6358564/

NEMMICHE, S. 2017. Oxidative signalling response to cadmium exposure, Toxicol Sci, 156 (1) 4-10. https://doi.org/10.1093/toxsci/kfw222

NRC, 1994. Nutrient Requirement of Poultry. 9th rev. ed. National Academy Press, Washington, D.C., USA.

OGNJANOVIC, B., MARKOVIC, S., PAVLOVIC, S., ZIKIC, R., STAJN, A., and SAICIC, Z., 2008. Effect of chronic cadmium exposure on antioxidant defense system in some tissues of rats: protective effect of selenium. Physiol Res, 57(3): 403-411. https://doi.org/10.33549/physiolres.931197

OKABE, M., HOSOKAWA, T., and SAITO, S., 2000. Co-localization of cu/Zn superoxide dismutase (SOD-1), nitric oxide synthase (NOS), and Zn/cu-metallothionein (MT) in rat brain. Springer, New York, ppt. 105–109. http://dx.doi.org/10.1007/0-306-47466-2_20

OMOTOSO, O., ADELAKUN, S., AKWU, B., OGBONNA, B., and IDOMEH, I., 2019. Histochemical assessment of Moringa – oleifera oil and walnut oil on cadmium induced lateral geniculate body damage in developing male Wistar rats (Rattus novergiccus), Anatomy Journal of Africa. 8,2. 189034. http://dx.doi.org/10.4314/aja.v8i2.189034

OZKAN, G., ULUSOY, S., ALKANAT, M., OREM, A., and AKCAN, B., 2012. Antiapoptotic and antioxidant effects of GSPE in preventing cyclosporine A-induced cardiotoxicity. Ren Fail 34: 460–466. https://doi.org/10.3109/0886022x.2012.656563

PATRA, R., RAUTRAY, A., and SWARUP, D., 2011. Oxidative stress in lead and cadmium toxicity and its amelioration, Vet Med Int457327. https://doi.org/10.4061/2011/457327

RAI, A., MAURYA, S., and KHARE, P., 2010. Characterization of developmental neurotoxicity of as, Cd, and Pb mixture: Synergistic action of metal mixture in glial and neuronal functions. Toxicological Sciences 118:586–601. https://doi.org/10.1093/toxsci/kfq266

RAI, N.K., ASHOK, A., RAI, A., TRIPATHI, S., NAGAR, G.K., MITRA, K., and BANDYOPADHYAY, S., 2013. Exposure to As Cd and Pb-mixture impairs myelin and axon development in rat brain, optic nerve and retina. ToxicolApplPharmacol. 273(2):242–58. https://doi.org/10.1016/j.taap.2013.05.003

RENUGADEVI, P., 2010. Cadmium-induced hepatotoxicity in rats and the protective effect of naringenin. Exp Toxicol Pathol 62: 171– 181. https://doi.org/10.1016/j.etp.2009.03.010

RIKANS, L., and YAMANO T., 2000. Mechanisms of cadmium-mediated acute hepatotoxicity. Journal of Biochemical and Molecular Toxicology, 14(2), 110–117. https://doi.org/10.1002/(sici)1099-0461(2000)14:2%3C110::aid-jbt7%3E3.0.co;2-j

RINALDI, T., KULANGARA, K., ANTONIELLO, K., and MARKRAM, H., 2007. Elevated NMDA receptor levels and enhanced postsynaptic long- term potentiation induced by prenatal exposure to Valproic acid. Proceedings of the National Academy of Sciences, 104 (33), 13501– 13506. https://doi.org/10.1073/pnas.0704391104

 SAEIDNIA, S.,  and ABDOLLAHI, M., 2013. Toxicological and pharmacological concerns on oxidative stress and related diseases. Toxicol Appl Pharmacol, 15; 273 (3): 42-55. https://doi.org/10.1016/j.taap.2013.09.031

ŞEHIRLI, Ö, Y., OZEL, E., DULUNDU., U., TOPALOGLU., F., and ERCAN G., ŞENER, 2008. Grape seed extract treatment reduces hepatic ischemia‐reperfusion injury in rats, Phytotherapy Research, 22 43- 48. https://doi.org/10.1002/ptr.2256

SHARMA, B., SINGH, S., and SIDDIQI, N. J., 2014. Biomedical implications of heavy metals induced imbalances in redox systems. Biomed Res Int 2014: 1–26. https://doi.org/10.1155/2014/640754

SHI, J., YU, J., POHORLY, E., and KAKUDA, Y., 2003. Polyphenolic in grape seeds‐ biochemistry and functionality. Journal of Medicinal Food, 6, 291–299. https://doi.org/10.1089/109662003772519831

SNEDECOR, G.W., and COCHRAN, W.G., 1989. Statistical Methods. 8th Edition, Iowa State University Press, Ames.

SOMAIA, A. N., AYAH, M. H. G., EZZ, E. S. E., ABEER, A. S., MONA, G. K., and KAWKAB, A. A., 2015. Protective effect of grape seed extract and/or silymarin against thioacetamide-induced hepatic fibrosis in rats. Liver J, 4:178. http://dx.doi.org/10.4172/2167-0889.1000178

SPRANGER, I., SUN, B., MATEUS, A., FREITAS, V., and RICARDO-DA-SILVA, J., 2008. Chemical characterization and antioxidant activities of Oligomeric and polymeric procyanidin fractions from grape seeds, Food Chemistry, 108 519-532. https://doi.org/10.1016/j.foodchem.2007.11.004

STIPEK, S., BOROVANSKÝ, J., JONES, C., HOMOKA, J., KLENER, P., LUK ˇ ÁŠ, M., ŠPIˇCÁK, J., TESAˇR, V., ZEMAN, M., and ZIMA, T., 2000.  Antioxidants and Free Radicals in Health and Disease; Grada Publishing: Prague, Czech Republic, p. 314. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3614697/

STOHS, S., BAGCHI, D., HASSOUN, E., and BAGCHI, M., 2001. Oxidative mechanisms in the toxicity of chromium and cadmium ions. Journal of Environmental Pathology, Toxicology and Oncology 19: 201- 213. http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v20.i2.10

TARASUB, N., JUNSEECHA, T., TARASUB, C., DEVAKUL, N. A., and AYUTTHAYA, W., 2012. Protective effects of curcumin, vitamin C, or their combination on cadmium-induced hepatotoxicity. J. Basic Clin. Pharm. 3:273-281. https://pubmed.ncbi.nlm.nih.gov/24826037/

TCHOUNWOU, P. B., YEDJOU, C. G., PATLOLLA, A. K., and SUTTON, D. J., 2012. Heavy metals toxicity and the environment. Molecular, Clinical and Environmental Toxicology 101:133–164. https://doi.org/10.1007%2F978-3-7643-8340-4_6

THOMPSON, J., and BANNIGAN, J., 2008. CADMIUM: Toxic Effects on the Reproductive System and the Embryo. Reproductive Toxicology, 25, 304-315. https://doi.org/10.1016/j.reprotox.2008.02.001

TOPPO, R., B. K., ROY, R. H., GORA, S. L., and BAXLA, P., KUMAR, 2015. Hepatoprotective activity of Moringa oleifera against cadmium toxicity in rats, Vet World, 8 537- 540. https://doi.org/10.14202/vetworld.2015.537-540

TU, X., WANG, M., LIU, Y., ZHAO, W., REN, X., LI, Y., and LI, G., 2019. Pretreatment of grape seed proanthocyanidin extract exerts neuroprotective effect in murine model of neonatal hypoxic- ischemic brain injury by its Antiapoptotic property. Cellular and molecular neurobiology, 39(7), 953–961. https://doi.org/10.1007/s10571-019-00691-7

TURKSOY, V, TUTKUN, L, GUNDUZOZ, M, OZTAN, O, DENIZ, S, and IRITAS, S, 2019. Changing levels of selenium and zinc in cadmium-exposed workers: probable association with the intensity of inflammation. Molecular Biology Reports. 46:5455–5464. https://doi.org/10.1007/s11033-019-05001-4

VASILJEVA, S., SMIRNOVA, G., BASOVA, N., and BABARYKIN, D., 2018. Cadmium-induced oxidative damage and protective action of fractioned red beet (Beta vulgaris) root juice in chickens. Agronomy Research 16 (S2), 1517 1526. https://doi.org/10.15159/AR.18.117VIVEROS, A., CHAMORRO, S., PIZARRO, M., ARIJA, I., CENTENO, C., and BRENES, A., 2011. Effects of dietary polyphenol‐rich grape products on intestinal microflora and gut morphology in broiler chicks. Poultry Science, 90, 566–578. https://doi.org/10.3382/ps.2010-00889

WAHDAN, M. H., ISMAIL, A. K., and SAAD, M. F., 2014. Effect of cadmium exposure on the structure of the cerebellar vermis of growing male albino rat. International Research Journal of Applied and Basic Sciences 8: 163–176. http://dx.doi.org/10.13140/RG.2.1.2044.0160

WAMAN, A. A., BOHRA, P., and NORMAN, A. 2018. Chemical pre-treatments improve seed germination and seedling growth in Semecarpus kurzii: an ethnomedicinally important plant. J For Res 29:1283– 1289. http://dx.doi.org/10.1007/s11676-017-0562-9WANG, B., and YANLI, D., 2013. Cadmium and its neurotoxic effects. Oxid Med Cell Longev. 898034. https://doi.org/10.1155/2013/898034

WARDAN, I. G., ERAIKO, K., and SUDJARWO, K., 2018. Protective Activity of Chitosan Nanoparticle against Cadmium Chloride Induced Gastric Toxicity in Rat. J Young Pharm, 10 (3):303-307. http://dx.doi.org/10.5530/jyp.2018.10.67

WU, G., Y. Z., FANG, S., YANG, J. R., AND LUPTON, N. and D., TURNER, 2004. Glutathione metabolism and its implications for health, J Nutr, 134 pp.489-492. https://doi.org/10.1093/jn/134.3.489

XIE, W., LV, A., LI, R., TANG, Z., MA, D., HUANG, X., ZHANG, R., and GE, M., 2018. Agaricus blazei Murill polysaccharides protect against cadmium-induced oxidative stress and inflammatory damage in chicken spleens. Biol Trace Elem Res 184(1):247-258. https://doi.org/10.1007/s12011-017-1189-6

XU, Z., YIN, J., ZHOU, B., LIU, Y., YU, Y., and LI, G., 2015. Grape seed proanthocyanidin protects liver against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress. World J. Gastroenterol, 21, 7468–7477. https://doi.org/10.3748/wjg.v21.i24.7468

YAZIHAN, N., M.K., KOCAK, E., AKCIL, O., ERDEM, A., SAYAL, C., and GUVEN, N., AKYUREK, 2011. Involvement of galectin-3 in cadmium-induced cardiac toxicity, Anadolu kardiyoloji dergisi: AKD = the Anatolian journal of cardiology, 11 479-484. https://doi.org/10.5152/akd.2011.130

YE, X., KROHN, R.L., LIU, W., JOSHI, S.S., KUSZYNSKI, C.A., MCGINN, T.R., BAGCHI, M., PREUSS, H.G., and STOHS, S.J., 1999. The cytotoxic effects of a novel IH636 grape seed proanthocyanidin extract on cultured human cancer cells. Mol. Cell. Biochem. 196, 99–108. PMID: 10448908

ZARZECKI, M.S., ARAUJO, S.M., BORTOLOTTO, V.C., DE PAULA, M.T., JESSE, C.R., and PRIGOL, M., 2014. Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Toxicology Reports, 1, 200–208. https://doi.org/10.1016/j.toxrep.2014.02.003

 

Statistics
Article View: 313
PDF Download: 331
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.