• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Indexing and Abstracting
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of Applied Veterinary Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 10 (2025)
Volume Volume 9 (2024)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 8 (2023)
Volume Volume 7 (2022)
Volume Volume 6 (2021)
Volume Volume 5 (2020)
Volume Volume 4 (2019)
Volume Volume 3 (2018)
Volume Volume 2 (2017)
Volume Volume 1 (2016)
Eissa, A. (2024). A mini-review on fish mass kills within the Egyptian fisheries and aquaculture sectors: Impacts and proposed solutions. Journal of Applied Veterinary Sciences, 9(2), 87-90. doi: 10.21608/javs.2024.262508.1308
Alaa Eldin Eissa. "A mini-review on fish mass kills within the Egyptian fisheries and aquaculture sectors: Impacts and proposed solutions". Journal of Applied Veterinary Sciences, 9, 2, 2024, 87-90. doi: 10.21608/javs.2024.262508.1308
Eissa, A. (2024). 'A mini-review on fish mass kills within the Egyptian fisheries and aquaculture sectors: Impacts and proposed solutions', Journal of Applied Veterinary Sciences, 9(2), pp. 87-90. doi: 10.21608/javs.2024.262508.1308
Eissa, A. A mini-review on fish mass kills within the Egyptian fisheries and aquaculture sectors: Impacts and proposed solutions. Journal of Applied Veterinary Sciences, 2024; 9(2): 87-90. doi: 10.21608/javs.2024.262508.1308

A mini-review on fish mass kills within the Egyptian fisheries and aquaculture sectors: Impacts and proposed solutions

Article 8, Volume 9, Issue 2, April 2024, Page 87-90  XML PDF (468.84 K)
Document Type: Review Article
DOI: 10.21608/javs.2024.262508.1308
View on SCiNiTO View on SCiNiTO
Author
Alaa Eldin Eissa email orcid
Department of Aquatic Animal Medicine and Management Faculty of Veterinary Medicine, Cairo University Giza 11221, Egypt
Receive Date: 13 January 2024,  Revise Date: 18 February 2024,  Accept Date: 24 February 2024 
Abstract
Mass fish kills are abrupt events in which a significant number of fish of different ages and species perish in a specific aquatic region. Dramatic waves of mass kills have involved a large variety of economic fish species in both Egyptian fisheries and the aquaculture sector. Several episodes of mass mortalities of various infectious and noninfectious aetiologies have targeted a wide spectrum of freshwater and marine fish in both open-water and captive environments. Kafr El-Sheikh, Sharkia, Dakahlia, Fayoum, Alexandria and Giza were the most affected Egyptian provinces. The Mediterranean basin, Lake Manzala, Lake Mariott, Lake Burullus, River Nile, and some provincial water streams and municipal water drains were all reported to have had one or more episodes of mass kills over the past two decades. These mass kills were mainly attributed to different types / magnitudes of aquatic environmental pollution, which was explicitly aggravated by poor aquaculture / fishing practices. Further, the frequent absence of veterinary guidance has had a great negative impact on providing possible solutions for this disaster in the near future. Ultimately, adopting Good Aquaculture Practice (GAP), competent biosecurity strategies, and regular veterinary supervision will be the most practical solutions that ensure the reliable growth and sustainability of both Egyptian fisheries and aquaculture sectors.
Keywords
Aquaculture; Biosecurity; Mass Mortalities; Photobacteriosis; Vibriosis
Main Subjects
Fish and aquatic medicine
References
BALEBONA, M. C., ANDREU, M. J., BORDAS, M. A., ZORRILLA, I., MORIÑIGO, M. A., and BORREGO, J. J., 1998. Pathogenicity of Vibrio alginolyticus for cultured gilt-head sea bream (Sparus aurata L.). Applied and Environmental Microbiology, 64(11), 4269-4275. https://doi.org/10.1128/aem.64.11.4269-4275.1998

BROWN, E. M. 1934. On Oodinium ocellatum Brown, a paxasitic dinoflagellate causing epidemic disease in Marine Fish. In Proceedings of the Zoological Society of London (Vol. 104, No. 3, pp. 583-607). Oxford, UK: Blackwell Publishing Ltd.

CRUZ-LACIERDA, E. R., MAENO, Y., PINEDA, A. J. T., and MATEY, V. E., 2004. Mass mortality of hatchery-reared milkfish (Chanos chanos) and mangrove red snapper (Lutjanus argentimaculatus) caused by Amyloodinium ocellatum (Dinoflagellida). Aquaculture, 236(1-4), 85-94. https://doi.org/10.1016/j.aquaculture.2004.02.012

EISSA, A.E. 2016. Clinical and Laboratory Manual of Fish Diseases. LAP Lambert Academic Publishing;

EISSA, A. E., ABOU OKADA, M., ALKURDI, A. R. M., EL ZLITNE, R. A., PRINCE, A., ABDELSALAM, M., and DERWA, H. I., 2021. Catastrophic mass mortalities caused by Photobacterium damselae affecting farmed marine fish from Deeba Triangle, Egypt. Aquaculture Research, 52(9), 4455-4466. https://doi.org/10.1111/are.15284

EISSA, A. E., THARWAT, N. A., and ZAKI, M. M., 2013. Field assessment of the mid winter mass kills of trophic fishes at Mariotteya stream, Egypt: Chemical and biological pollution synergistic model. Chemosphere, 90(3), 1061-1068. https://doi.org/10.1016/j.chemosphere.2012.09.010

EISSA, A. E., and ZAKI, M. M., 2011. The impact of global climatic changes on the aquatic environment. Procedia Environmental Sciences, 4, 251-259. https://doi.org/10.1016/j.proenv.2011.03.030

EISSA, A. E., ZAKI, M. M., and SAEID, S., 2011. Epidemic mortalities in the dusky grouper, Epinephelus marginatus (Lowe, 1834) in Egyptian coastal waters. In Proceedings of the 4th Global Fisheries and Aquaculture Research Conference, the Egyptian International Center for Agriculture, Giza, Egypt (pp. 3-5).

EL ZLITNE, R. A., EISSA, A. E., ELGENDY, M. Y., ABDELSALAM, M., SABRY, N. M., SHARAF, M. S., and ABDELBAKY, A. A., 2022. Vibriosis triggered mass kills in Pacific white leg shrimp (Litopenaeus vannamei) reared at some Egyptian earthen pond-based aquaculture facilities. Egyptian Journal of Aquatic Biology & Fisheries, 26(3). https://dx.doi.org/10.21608/ejabf.2022.239758

IRSHATH, A. A., RAJAN, A. P., VIMAL, S., PRABHAKARAN, V. S., and GANESAN, R., 2023. Bacterial pathogenesis in various fish diseases: Recent advances and specific challenges in vaccine development. Vaccines, 11(2), 470. https://doi.org/10.3390/vaccines11020470

KRKOŠEK, M. 2017. Population biology of infectious diseases shared by wild and farmed fish. Canadian Journal of Fisheries and Aquatic Sciences, 74(4), 620-628. https://doi.org/10.1139/cjfas-2016-0379

LA, V. T., and COOKE, S. J., 2011. Advancing the science and practice of fish kill investigations. Reviews in Fisheries Science, 19(1), 21-33. https://doi.org/10.1080/10641262.2010.531793

MARZOUK, M., HANNA, M., and KENAWY, A. M., 2009. Monitoring the cause of mortality in some marine fishes in Matrouh Governorate, Egypt during the summer 2008. American-Eurasian Journal of Agricultural and Environmental Science, 5(2), 148-158.

OCHOA, J. L., SÁNCHEZ-PAZ, A., CRUZ-VILLACORTA, A., NUNEZ-VÁZQUEZ, E., and SIERRA-BELTRÁN, A., 1997. Toxic events in the northwest Pacific coastline of Mexico during 1992–1995: Origin and impact. In Asia-Pacific Conference on Science and Management of Coastal Environment: Proceedings of the International Conference held in Hong Kong, 25–28 June 1996 (pp. 195-200). Springer Netherlands. https://link.springer.com/article/10.1023/A:1003015103760

OVERSTREET, R. M., and HAWKINS, W. E., 2017. Diseases and mortalities of fishes and other animals in the Gulf of Mexico. Habitats and Biota of the Gulf of Mexico: Before the Deepwater Horizon Oil Spill: Volume 2: Fish Resources, Fisheries, Sea Turtles, Avian Resources, Marine Mammals, Diseases and Mortalities, 1589-1738.

POLLOCK, M. S., CLARKE, L. M. J., and DUBÉ, M. G., 2007. The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environmental Reviews, 15(NA), 1-14. https://doi.org/10.1139/a06-006

RAGAB, R. H., ELGENDY, M. Y., SABRY, N. M., SHARAF, M. S., ATTIA, M. M., KORANY, R. M., and EISSA, A. E., 2022. Mass kills in hatchery-reared European seabass (Dicentrarchus labrax) triggered by concomitant infections of Amyloodinium ocellatum and Vibrio alginolyticus. International Journal of Veterinary Science and Medicine, 10(1), 33-45. https://doi.org/10.1080/23144599.2022.2070346

RICHARDS, J. G. 2011. Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia. Journal of Experimental Biology, 214(2), 191-199. https://doi.org/10.1242/jeb.047951

ROMAN, M. R., BRANDT, S. B., HOUDE, E. D., and PIERSON, J. J., 2019. Interactive effects of hypoxia and temperature on coastal pelagic zooplankton and fish. Frontiers in Marine Science, 6, 139. https://doi.org/10.3389/fmars.2019.00139

ROSE, K. A., ADAMACK, A. T., MURPHY, C. A., SABLE, S. E., KOLESAR, S. E., CRAIG, J. K., and DIAMOND, S., 2009. Does hypoxia have population-level effects on coastal fish? Musings from the virtual world. Journal of Experimental Marine Biology and Ecology, 381, S188-S203. https://doi.org/10.1016/j.jembe.2009.07.022

SCHOLIN, C. A., GULLAND, F., DOUCETTE, G. J., BENSON, S., BUSMAN, M., CHAVEZ, F. P., and Van DOLAH, F. M., 2000. Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature, 403(6765), 80-84. https://doi.org/10.1038/47481

SORENSEN, E. M. 1991. Metal Poisoning In Fish. Crc Press.

ZORRILLA, I., MORIÑIGO, M. A., CASTRO, D., BALEBONA, M. C., and BORREGO, J. J., 2003. Intraspecific characterization of Vibrio alginolyticus isolates recovered from cultured fish in Spain. Journal of Applied Microbiology, 95(5), 1106-1116. https://doi.org/10.1046/j.1365-2672.2003.02078.x

 

Statistics
Article View: 468
PDF Download: 525
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.