Kamel, N., Bashir, D., El-Leithy, E., Tohamy, A., Rashad, M., Ali, G., A.A., E. (2024). Screening the Toxic effect of Polyethylene Terephthalate Nanoplastics on Kidney of Adult Male Swiss Albino Mice with Promising Betaine Alleviation. Journal of Applied Veterinary Sciences, 9(2), 55-66. doi: 10.21608/javs.2024.255947.1301
Nehal A. Kamel; Dina W. Bashir; Ebtihal M.M. El-Leithy; Adel F. Tohamy; Maha M. Rashad; Ghada E. Ali; El -Saba A.A.. "Screening the Toxic effect of Polyethylene Terephthalate Nanoplastics on Kidney of Adult Male Swiss Albino Mice with Promising Betaine Alleviation". Journal of Applied Veterinary Sciences, 9, 2, 2024, 55-66. doi: 10.21608/javs.2024.255947.1301
Kamel, N., Bashir, D., El-Leithy, E., Tohamy, A., Rashad, M., Ali, G., A.A., E. (2024). 'Screening the Toxic effect of Polyethylene Terephthalate Nanoplastics on Kidney of Adult Male Swiss Albino Mice with Promising Betaine Alleviation', Journal of Applied Veterinary Sciences, 9(2), pp. 55-66. doi: 10.21608/javs.2024.255947.1301
Kamel, N., Bashir, D., El-Leithy, E., Tohamy, A., Rashad, M., Ali, G., A.A., E. Screening the Toxic effect of Polyethylene Terephthalate Nanoplastics on Kidney of Adult Male Swiss Albino Mice with Promising Betaine Alleviation. Journal of Applied Veterinary Sciences, 2024; 9(2): 55-66. doi: 10.21608/javs.2024.255947.1301
Screening the Toxic effect of Polyethylene Terephthalate Nanoplastics on Kidney of Adult Male Swiss Albino Mice with Promising Betaine Alleviation
1cytology and histology, faculty of veterinary medicine, Cairo university, Giza, Egypt
2cytology and histology, faculty of veterinary medicine, Giza, Egypt
3Department of Toxicology and Forensic medicine, Faculty of Veterinary Medicine, Cairo University, Egypt
4Department of Biochemistry and molecular biology, Faculty of Veterinary of Veterinary Medicine, Cairo University, Egypt
5Department of Biochemistry and molecular biology, Faculty of Veterinary Medicine, Cairo University, Egypt
6Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
Receive Date: 16 December 2023,
Revise Date: 12 January 2024,
Accept Date: 05 February 2024
Abstract
Polyethylene terephthalate nanoplastics (PET-NPs) are utilized in the production of medical bionic materials and the packaging of beverages. Betaine is a ubiquitous natural constituent present in organisms such as plants, animals, and microorganisms. So, the current investigation tries to find out if PET-NPs could seriously harm mice's kidneys and whether betaine could have any ameliorative effects. In this study, a total of 40 mice were separated into four groups (ten mice in each): Group I (performed as the control group), Group II (received 1000 mg/kg betaine intraperitoneally), Group III (received 200 mg/kg PET-NPs orally), and Group IV (was given betaine first, and after 1 hour, PET-NPs were given at dosages that were the same as those given to groups II and III, respectively) daily for a month. Serum and kidney samples were collected and processed for biochemical and histological assessments. The current study found that PET-NPs significantly increased blood urea nitrogen (BUN), creatinine, and malondialdehyde levels (MDA), while reducing glutathione (GSH) levels. The histological examination revealed multiple histopathological alterations. The PET-NPs-exposed group demonstrated renal corpuscle hypotrophy, a loss of cellular structure in some proximal convoluted tubules (PCT) and distal convoluted tubules (DCT). The renal medulla exhibits hyalinization, congestion, and degeneration of collecting tubules. Conversely, the pre-administration of betaine results in a decline in BUN, creatinine, and MDA concentrations. Furthermore, there is a rise in GSH levels, and the group pretreated with betaine showed significant improvement in kidney architecture, with the renal cortex showing almost normal architecture and the collecting tubules in the renal medulla slightly improving. In conclusion, betaine showed a promising nephroprotective effect against PET-NP-induced toxicity
ABDEL-DAIM, M. M., and ABDELLATIEF, S. A., 2018. Attenuating effects of caffeic acid phenethyl ester and betaine on abamectin-induced hepatotoxicity and nephrotoxicity. Environmental Science and Pollution Research, 25, 15909-15917. https://doi.org/10.1007/s11356-018-1786-8
ABDELHALIM, M. A. K., and JARRAR, B. M., 2011. The appearance of renal cells cytoplasmic degeneration and nuclear destruction might be an indication of GNPs toxicity. Lipids in Health and Disease, 10, 1-6. https://doi.org/10.1186/1476-511X-10-147
AHMED, Y. H., EL-NAGGAR, M. E., RASHAD, M. M., M. YOUSSEF, A., GALAL, M. K., and BASHIR, D. W., 2022. Screening for polystyrene nanoparticle toxicity on kidneys of adult male albino rats using histopathological, biochemical, and molecular examination results. Cell and Tissue Research, 388, 149-165. https://doi.org/10.1007/s00441-022-03581-5.
AL ASMARI, A. K., AL SADOON, K. T., OBAID, A. A., YESUNAYAGAM, D., and TARIQ, M., 2017. Protective effect of quinacrine against glycerol-induced acute kidney injury in rats. BMC nephrology, 18, 1-10. https://doi.org/10.1186/s12882-017-0450-8
AL ZA’ABI, M., ALI, H., AL SABAHI, M., and ALI, B. H., 2021. The salutary action of melatonin and betaine, given singly or concomitantly, on cisplatin-induced nephrotoxicity in mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 394, 1693-1701. https://doi.org/10.1007/s00210-021-02097-z
ALIMI, O. S., FARNER BUDARZ, J., HERNANDEZ, L. M., and TUFENKJI, N., 2018. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environmental science and technology, 52, 1704-1724. https://doi.org/10.1021/acs.est.7b05559
AMEREH, F., ESLAMI, A., FAZELIPOUR, S., RAFIEE, M., ZIBAII, M. I., and BABAEI, M., 2019. Thyroid endocrine status and biochemical stress responses in adult male Wistar rats chronically exposed to pristine polystyrene nanoplastics. Toxicology research, 8, 953-963. https://doi.org/10.1039/c9tx00147f
BANCROFT, J. D., LAYTON, C., and SUVARNA, S. K., 2013. Bancroft's theory and practice of histological techniques, Churchill Livingstone Elsevier.
BANERJEE, A., and SHELVER, W. L., 2021. Micro-and nanoplastic induced cellular toxicity in mammals: A review. Science of the Total Environment, 755, 142518. https://doi.org/10.1016/j.scitotenv.2020.142518
BEUTLER, E., DURON, O., and KELLY, B. M., 1963. Improved method for the determination of blood glutathione. The Journal of laboratory and clinical medicine, 61, 882-888.
COMMITTEE, E. S., HARDY, A., BENFORD, D., HALLDORSSON, T., JEGER, M. J., KNUTSEN, H. K.,MORE, S., NAEGELI, H., NOTEBORN, H., and OCKLEFORD, C., 2018. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA journal, 16, e05327.
DELLA TORRE, C., BERGAMI, E., SALVATI, A., FALERI, C., CIRINO, P., DAWSON, K., and CORSI, I., 2014. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus. Environmental science and technology, 48, 12302-12311. https://doi.org/10.1021/es502569w
DENG, Y., ZHANG, Y., LEMOS, B., and REN, H., 2017. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Scientific reports, 7, 46687. https://doi.org/10.1038/srep46687
DRIS, R., GASPERI, J., SAAD, M., MIRANDE, C., and TASSIN, B., 2016. Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? Marine pollution bulletin, 104, 290-293. https://doi.org/10.1016/j.marpolbul.2016.01.006
EKLUND, M., BAUER, E., WAMATU, J., and MOSENTHIN, R., 2005. Potential nutritional and physiological functions of betaine in livestock. Nutrition research reviews, 18, 31-48. https://doi.org/10.1079/NRR200493
ELIZALDE-VELÁZQUEZ, A., CRAGO, J., ZHAO, X., GREEN, M. J., and CAÑAS-CARRELL, J. E., 2020. In vivo effects on the immune function of fathead minnow (Pimephales promelas) following ingestion and intraperitoneal injection of polystyrene nanoplastics. Science of The Total Environment, 735, 139461. https://doi.org/10.1016/j.scitotenv.2020.139461
FENDALL, L. S., and SEWELL, M. A., 2009. Contributing to marine pollution by washing your face: microplastics in facial cleansers. Marine pollution bulletin, 58, 1225-1228. https://doi.org/10.1016/j.marpolbul.2009.04.025
GANESAN, B., BUDDHAN, S., ANANDAN, R., SIVAKUMAR, R. and ANBINEZHILAN, R. 2010. Antioxidant defense of betaine against isoprenaline-induced myocardial infarction in rats. Molecular biology reports, 37, 1319-1327. https://doi.org/10.1007/s11033-009-9508-4
GERDES, Z., OGONOWSKI, M., NYBOM, I., EK, C., ADOLFSSON-ERICI, M., BARTH, A., and GOROKHOVA, E., 2019. Microplastic-mediated transport of PCBs? A depuration study with Daphnia magna. PloS one, 14, e0205378. https://doi.org/10.17605/OSF.IO/YKFNA
GHARTAVOL, M. M., GHOLIZADEH‐GHALEH AZIZ, S., BABAEI, G., HOSSEIN FARJAH, G., and HASSAN KHADEM ANSARI, M., 2019. The protective impact of betaine on the tissue structure and renal function in isoproterenol‐induced myocardial infarction in rat. Molecular Genetics and Genomic Medicine, 7, e00579. https://doi.org/10.1002/mgg3.579
GHYCZY, M., and BOROS, M., 2001. Electrophilic methyl groups present in the diet ameliorate pathological states induced by reductive and oxidative stress: a hypothesis. British Journal of Nutrition, 85, 409-414. https://doi.org/10.1079/BJN2000274
GUIMARÃES, A. T. B., ESTRELA, F. N., PEREIRA, P. S., DE ANDRADE VIEIRA, J. E., DE LIMA RODRIGUES, A. S., SILVA, F. G., and MALAFAIA, G., 2021. Toxicity of polystyrene nanoplastics in Ctenopharyngodon idella juveniles: a genotoxic, mutagenic and cytotoxic perspective. Science of The Total Environment, 752, 141937. https://doi.org/10.1016/j.scitotenv.2020.141937
HAGAR, H., and AL MALKI, W., 2014. Betaine supplementation protects against renal injury induced by cadmium intoxication in rats: role of oxidative stress and caspase-3. Environmental Toxicology and Pharmacology, 37, 803-811. https://doi.org/10.1016/j.etap.2014.02.013
HAGAR, H., EL MEDANY, A., SALAM, R., EL MEDANY, G., and NAYAL, O. A., 2015. Betaine supplementation mitigates cisplatin-induced nephrotoxicity by abrogation of oxidative/nitrosative stress and suppression of inflammation and apoptosis in rats. Experimental and Toxicologic Pathology, 67, 133-141. https://doi.org/10.1016/j.etp.2014.11.001
HALDAR, S., YHOME, N., MURALIDARAN, Y., RAJAGOPAL, S., and MISHRA, P., 2023. Nanoplastics Toxicity Specific to Liver in Inducing Metabolic Dysfunction—A Comprehensive Review. Genes, 14, 590. https://doi.org/10.3390/genes14030590
HU, M., and PALIĆ, D., 2020. Micro-and nano-plastics activation of oxidative and inflammatory adverse outcome pathways. Redox biology, 37, 101620. https://doi.org/10.1016/j.redox.2020.101620
IBRAHIM, K. E., AL-MUTARY, M. G., BAKHIET, A. O. and KHAN, H. A. 2018. Histopathology of the liver, kidney, and spleen of mice exposed to gold nanoparticles. Molecules, 23, 1848.
ISHMUKHAMETOV, I., BATASHEVA, S., and FAKHRULLIN, R., 2022. Identification of micro-and nanoplastics released from medical masks using hyperspectral imaging and deep learning. Analyst, 147, 4616-4628. https://doi.org/10.3390/molecules23081848
JOFFRE, J., and HELLMAN, J., 2021. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation. Antioxidants and redox signaling, 35, 1291-1307. https://doi.org/10.1089/ars.2021.0027
KANBAK, G., AKYÜZ, F., and INAL, M., 2001. Preventive effect of betaine on ethanol-induced membrane lipid composition and membrane ATPases. Archives of toxicology, 75, 59-61. https://doi.org/10.1007/s002040000179
KHALAF, A. A. A., ELHADY, M. A., HASSANEN, E. I., AZOUZ, A. A., IBRAHIM, M. A., GALAL, M. K., NOSHY, P. A., and AZOUZ, R. A., 2021. Antioxidant role of carvacrol against hepatotoxicity and nephrotoxicity induced by propiconazole in rats. Revista Brasileira de Farmacognosia, 31, 67-74. https://doi.org/10.1007/s43450-021-00127-8
KHODAYAR, M. J., KALANTARI, H., KHORSANDI, L., RASHNO, M., and ZEIDOONI, L., 2018. Betaine protects mice against acetaminophen hepatotoxicity possibly via mitochondrial complex II and glutathione availability. Biomedicine and Pharmacotherapy, 103, 1436-1445. https://doi.org/10.1016/j.biopha.2018.04.154
KIM, S. K., and KIM, Y. C., 2005. Effects of betaine supplementation on hepatic metabolism of sulfur-containing amino acids in mice. Journal of hepatology, 42, 907-913. https://doi.org/10.1016/j.jhep.2005.01.017
KIM, S. W., KWAK, J. I., and AN, Y.-J., 2013. Multigenerational study of gold nanoparticles in Caenorhabditis elegans: transgenerational effect of maternal exposure. Environmental science and technology, 47, 5393-5399. https://doi.org/10.1021/es304511z
LI, X., HU, J., QIU, R., ZHANG, X., CHEN, Y., and HE, D., 2020b. Joint toxic effects of polystyrene nanoparticles and organochlorine pesticides (chlordane and hexachlorocyclohexane) on Caenorhabditis elegans. Environmental Science: Nano, 7, 3062-3073. https://doi.org/10.1039/D0EN00654H
LI, Y., XU, M., ZHANG, Z., HALIMU, G., LI, Y., LI, Y., GU, W., ZHANG, B., and WANG, X., 2022. In vitro study on the toxicity of nanoplastics with different charges to murine splenic lymphocytes. Journal of Hazardous Materials, 424, 127508. https://doi.org/10.1016/j.jhazmat.2021.127508
LI, Z., FENG, C., WU, Y., and GUO, X., 2020a. Impacts of nanoplastics on bivalve: Fluorescence tracing of organ accumulation, oxidative stress and damage. Journal of hazardous materials, 392, 122418. https://doi.org/10.1016/j.jhazmat.2020.122418
LIN, X., XIE, H., ZHANG, Y., TIAN, X., CUI, L., SHI, N., WANG, L., ZHAO, J., AN, L., and WANG, J., 2023. The toxicity of nano polyethylene terephthalate to mice: Intestinal obstruction, growth retardant, gut microbiota dysbiosis and lipid metabolism disorders. Food and Chemical Toxicology, 172, 113585. https://doi.org/10.1016/j.fct.2022.113585
LIPINSKI, K., SZRAMKO, E., JEROCH, H., and MATUSEVICIUS, P., 2012. Effects of betaine on energy utilization in growing pigs-A review. Annals of Animal Science, 12, 291. https://doi.org/10.2478/v10220-012-0024-4
MITRANO, D. M., WICK, P., and NOWACK, B., 2021. Placing nanoplastics in the context of global plastic pollution. Nature Nanotechnology, 16, 491-500. https://doi.org/10.1038/s41565-021-00888-2
MOORE, M. 2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment international, 32, 967-976. https://doi.org/10.1016/j.envint.2006.06.014
NASHWA A, M., and SAMIRA M, S., 2010. Effect of pre and postnatal exposure to lead acetate on the kidney of male albino rat: a light and electron microscopic study.
OMMATI, M. M., FARSHAD, O., AZARPIRA, N., SHAFAGHAT, M., NIKNAHAD, H., and HEIDARI, R., 2021. Betaine alleviates cholestasis-associated renal injury by mitigating oxidative stress and enhancing mitochondrial function. Biologia, 76, 351-365. https://doi.org/10.2478/s11756-020-00576-x
OZTURK, F., UCAR, M., OZTURK, I. C., VARDI, N., and BATCIOGLU, K., 2003. Carbon tetrachloride-induced nephrotoxicity and protective effect of betaine in Sprague-Dawley rats. Urology, 62, 353-356. https://doi.org/10.1016/S0090-4295(03)00255-3
PROKIĆ, M. D., RADOVANOVIĆ, T. B., GAVRIĆ, J. P. and FAGGIO, C. 2019. Ecotoxicological effects of microplastics: Examination of biomarkers, current state and future perspectives. TrAC Trends in analyticalchemistry, 111, 37-46. https://doi.org/10.1016/j.trac.2018.12.001
PRÜST, M., MEIJER, J., and WESTERINK, R. H., 2020. The plastic brain: neurotoxicity of micro-and nanoplastics. Particle and fibre toxicology, 17, 1-16. https://doi.org/10.1186/s12989-020-00358-y
RODRÍGUEZ-HERNÁNDEZ, A. G., MUÑOZ-TABARES, J. A., AGUILAR-GUZMÁN, J. C., and VAZQUEZ-DUHALT, R., 2019. A novel and simple method for polyethylene terephthalate (PET) nanoparticle production. Environmental Science: Nano, 6, 2031-2036. https://doi.org/10.1039/C9EN00365G
RUBIO, L., BARGUILLA, I., DOMENECH, J., MARCOS, R., and HERNÁNDEZ, A., 2020. Biological effects, including oxidative stress and genotoxic damage, of polystyrene nanoparticles in different human hematopoietic cell lines. Journal of hazardous materials, 398, 122900. https://doi.org/10.1016/j.jhazmat.2020.122900
SARASAMMA, S., AUDIRA, G., SIREGAR, P., MALHOTRA, N., LAI, Y.-H., LIANG, S.-T., CHEN, J.-R., CHEN, K. H.-C., and HSIAO, C.-D., 2020. Nanoplastics cause neurobehavioral impairments, reproductive and oxidative damages, and biomarker responses in zebrafish: throwing up alarms of wide spread health risk of exposure. International journal of molecular sciences, 21, 1410. https://doi.org/10.3390/ijms21041410
SATOH, K. 1978. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method, Czlinica Chimica Acta, 90 (1), p37-43. SCHIRMEISTER, J., WILLMANN, H. and KIEFER, H. 1964. Plasma creatinine as rough indicator of renal function. Deutsche Medizinische Wochenschrift (1946), 89, 1018. https://doi.org/10.1055/s-0028-1111251
SHI, Y., XU, L., TANG, J., FANG, L., MA, S., MA, X., NIE, J., PI, X., QIU, A., and ZHUANG, S., 2017. Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury. American Journal of Physiology-Renal Physiology, 312, F502-F515. https://doi.org/10.1152/ajprenal.00546.2016
SMITH, M., LOVE, D. C., ROCHMAN, C. M., and NEFF, R. A., 2018. Microplastics in seafood and the implications for human health. Current environmental health reports, 5, 375-386.
WAHL, A., LE JUGE, C., DAVRANCHE, M., EL HADRI, H., GRASSL, B., REYNAUD, S., and GIGAULT, J., 2021. Nanoplastic occurrence in a soil amended with plastic debris. Chemosphere, 262, 127784. https://doi.org/10.1016/j.chemosphere.2020.127784
WANG, L., WU, W.-M., BOLAN, N. S., TSANG, D. C., LI, Y., QIN, M., and HOU, D., 2021. Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives. Journal of hazardous materials, 401, 123415. https://doi.org/10.1016/j.jhazmat.2020.123415
XU, D., MA, Y., HAN, X., and CHEN, Y., 2021. Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into Caco-2 cells. Journal of hazardous materials, 417, 126092. https://doi.org/10.1016/j.jhazmat.2021.126092.
XU, J.-L., LIN, X., WANG, J. J., and GOWEN, A. A., 2022. A review of potential human health impacts of micro-and nanoplastics exposure. Science of the Total Environment, 851, 158111.
YIN, M., JIANG, N., GUO, L., NI, Z., AL-BRAKATI, A. Y., OTHMAN, M. S., MONEIM, A. E. A., and KASSAB, R. B., 2019. Oleuropein suppresses oxidative, inflammatory, and apoptotic responses following glycerol-induced acute kidney injury in rats. Life sciences, 232, 116634. https://doi.org/10.1016/j.lfs.2019.116634
ZHAO, G., HE, F., WU, C., LI, P., LI, N., DENG, J., ZHU, G., REN, W., and PENG, Y., 2018. Betaine in inflammation: mechanistic aspects and applications. Frontiers in immunology, 9, 1070. https://doi.org/10.3389/fimmu.2018.01070.
ZHU, H.-C., and CAO, R.-L., 2012. The relationship between serum levels of uric acid and prognosis of infection in critically ill patients. World journal of emergency medicine, 3, 186. https://doi.org/10.5847%2Fwjem.j.issn.1920-8642.2012.03.005