Abuzaied, H., Bashir, D., Rashad, E., Rashad, M., El-Habback, H. (2024). Ginseng Extract can alleviate The Induced-renal Toxicity of Titanium Dioxide Nanoparticles in a Rat Model. Journal of Applied Veterinary Sciences, 9(2), 1-17. doi: 10.21608/javs.2024.253254.1296
Heba Abuzaied; Dina W. Bashir; Eman Rashad; Maha M. Rashad; Hany El-Habback. "Ginseng Extract can alleviate The Induced-renal Toxicity of Titanium Dioxide Nanoparticles in a Rat Model". Journal of Applied Veterinary Sciences, 9, 2, 2024, 1-17. doi: 10.21608/javs.2024.253254.1296
Abuzaied, H., Bashir, D., Rashad, E., Rashad, M., El-Habback, H. (2024). 'Ginseng Extract can alleviate The Induced-renal Toxicity of Titanium Dioxide Nanoparticles in a Rat Model', Journal of Applied Veterinary Sciences, 9(2), pp. 1-17. doi: 10.21608/javs.2024.253254.1296
Abuzaied, H., Bashir, D., Rashad, E., Rashad, M., El-Habback, H. Ginseng Extract can alleviate The Induced-renal Toxicity of Titanium Dioxide Nanoparticles in a Rat Model. Journal of Applied Veterinary Sciences, 2024; 9(2): 1-17. doi: 10.21608/javs.2024.253254.1296
Ginseng Extract can alleviate The Induced-renal Toxicity of Titanium Dioxide Nanoparticles in a Rat Model
1Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
2Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
3Professor of Histology and Cytology, Faculty of Veterinary Medicine, Cairo University, Egypt
Receive Date: 05 December 2023,
Revise Date: 03 January 2024,
Accept Date: 28 January 2024
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are widely utilized in cosmetics, food, and paintings. Although TiO2-NPs may cause toxicity through a variety of routes, oxidative stress is by far the most common. Ginseng is employed in a variety of medical applications because of its potency as an antioxidant. Thus, the purpose of this study is to assess the protective and therapeutic benefits of Panax ginseng against TiO2-NPs administration in the kidneys of male rats. Thirty-five mature male albino rats were divided into five groups of seven rats each at random. The experimental groups were as follows: Group I served as the control group; Group II received 200 mg/kg of ginseng orally; Group III received 200 mg/kg of TiO2-NPs orally; Group IV served as the protective group;rats were pretreated with ginseng 1 hour before TiO2-NPs at a dose similar to GII and GIII, respectively; and Group V served as the treatment group; rats received TiO2-NPs for 14 days, then ginseng for another 14 days at a dose identical to GIII and GII, respectively. After 4 weeks, serum samples were collected, and kidney tissues were dissected for biochemical and histopathological examinations. Treatment with TiO2-NPs elevated malonaldehyde (MDA), kidney biomarkers, and reduced glutathione (GSH) and glutathione peroxidase (GPx) levels. Furthermore, TiO2-NPs induce upregulation of cysteine-aspartic acid protease (caspase3) and cyclooxygenase (COX-2). Histopathologically, TiO2-NPs caused degenerative changes in renal tissue, including renal corpuscles, and showed hypertrophy with capillary congestion. Most renal tubules showed marked luminal dilation with epithelial cell flattening. Additionally, there was reduced immunoreactivity of Ki-67 in the kidney sections. Ginseng, on the other hand, substantially mitigated the detrimental impacts that TiO2-NPs had on the rat renal tissues by down-regulating the genes for COX-2 and caspase3, restoring these biochemical and molecular parameters, and ameliorating the histological changes. In conclusion, ginseng could potentially be used to alleviate the renal toxicity brought on by TiO2-NPs.
ABBASI-OSHAGHI, E., MIRZAEI, F., and POURJAFAR, M., 2019. NLRP3 inflammasome, oxidative stress, and apoptosis induced in the intestine and liver of rats treated with titanium dioxide nanoparticles: in vivo and in vitro study. International journal of nanomedicine, 1919-1936.
https://doi.org/10.2147/IJN.S192382
ABD ELDAIM, M. A. A., ABD EL LATIF, A. S., HASSAN, A., and EL-BORAI, N. B., 2020. Ginseng attenuates fipronil-induced hepatorenal toxicity via its antioxidant, anti-apoptotic, and anti-inflammatory activities in rats. Environmental Science and Pollution Research, 27, 45008-45017. https://doi.org/10.1007/s11356-020-10306-0
ABDEL-WAHHAB, M. A., EL-NEKEETY, A. A., MOHAMMED, H. E., ELSHAFEY, O. I., ABDEL-AZIEM, S. H., and HASSAN, N. S., 2021. Elimination of oxidative stress and genotoxicity of biosynthesized titanium dioxide nanoparticles in rats via supplementation with whey protein-coated thyme essential oil. Environmental Science and Pollution Research, 28, 57640-57656. https://doi.org/10.1007/s11356-021-14723-7
ABDEL DAYEM, D. A. M., MAHMOUD, A. S., ALI, A. H., and EL-TAHAWY, N. F. G., 2020. Ginseng Ameliorates Effect of Prolonged Use of Omeprazole in Rat Renal Cortex through Decreasing Inflammation, Fibrosis and Apoptosis. bioRxiv, 2020.01. 22.915587. https://doi.org/10.1101/2020.01.22.915587
ABDELFATTAH-HASSAN, A., SHALABY, S. I., KHATER, S. I., EL-SHETRY, E. S., ABD EL FADIL, H., and ELSAYED, S. A., 2019. Panax ginseng is superior to vitamin E as a hepatoprotector against cyclophosphamide-induced liver damage. Complementary Therapies in Medicine, 46, 95-102. https://doi.org/10.1016/j.ctim.2019.08.005
ABDELHALIM, M. A. K., and JARRAR, B. M., 2011. The appearance of renal cells cytoplasmic degeneration and nuclear destruction might be an indication of GNPs toxicity. Lipids in Health and Disease, 10, 1-6. https://doi.org/10.1186/1476-511X-10-147
ABDOU, K., MOSELHY, W. A., MOHAMED, H. M., EL-NAHASS, E.-S., and KHALIFA, A. G., 2019. Moringa oleifera leaves extract protects titanium dioxide nanoparticles-induced nephrotoxicity via Nrf2/HO-1 signaling and amelioration of oxidative stress. Biological trace element research, 187, 181-191. https://doi.org/10.1007/s12011-018-1366-2
AHMED, Y. H., EL-NAGGAR, M. E., RASHAD, M. M., M. YOUSSEF, A., GALAL, M. K., and BASHIR, D. W., 2022. Screening for polystyrene nanoparticle toxicity on kidneys of adult male albino rats using histopathological, biochemical, and molecular examination results. Cell and Tissue Research, 388, 149-165. https://doi.org/10.1007/s00441-022-03581-5
AL-DOAISS, A. A., ALI, D., ALI, B. A., and JARRAR, B. M., 2019. Renal Histological Alterations Induced by Acute Exposure of Titanium Dioxide Nanoparticles. International Journal of Morphology, 37. http://dx.doi.org/10.4067/S0717-95022019000301049.
ASLAM, M., DAYAL, R., JAVED, K., PARRAY, S., JETLEY, S., and SAMIM, M., 2013. Nephroprotective effects of methanolic extract of Peucedanum grande against acute renal failure induced by potassium dichromate in rats. Int J Pharm Sci Drug Res, 5, 45-9.
ATTA, A. H., ATTA, S. A., KHATTAB, M. S., EL-AZIZ, T. H. A., MOUNEIR, S. M., IBRAHIM, M. A., NASR, S. M., and EMAM, S. R., 2023. C eratonia siliqua pods (Carob) methanol extract alleviates doxorubicin-induced nephrotoxicity via antioxidant, anti-inflammatory and anti-apoptotic pathways in rats. Environmental Science and Pollution Research, 1-18. https://doi.org/10.1007/s11356-023-28146-z
AZIM, S. A. A., DARWISH, H. A., RIZK, M. Z., ALI, S. A., and KADRY, M. O., 2015. Amelioration of titanium dioxide nanoparticles-induced liver injury in mice: possible role of some antioxidants. Experimental and Toxicologic Pathology, 67, 305-314. https://doi.org/10.1016/j.etp.2015.02.001
BAEK, S.-H., SHIN, B.-K., KIM, N. J., CHANG, S.-Y., and PARK, J. H., 2017. Protective effect of ginsenosides Rk3 and Rh4 on cisplatin-induced acute kidney injury in vitro and in vivo. Journal of Ginseng Research, 41, 233-239. https://doi.org/10.1016/j.jgr.2016.03.008
BAK, M.-J., JUN, M., and JEONG, W.-S., 2012. Antioxidant and hepatoprotective effects of the red ginseng essential oil in H2O2-treated HepG2 cells and CCl4-treated mice. International journal of molecular sciences, 13, 2314-2330. https://doi.org/10.3390/ijms13022314
BAKOUR, M., HAMMAS, N., LAAROUSSI, H., OUSAAID, D., FATEMI, H. E., ABOULGHAZI, A., SOULO, N., and LYOUSSI, B., 2021. Moroccan bee bread improves biochemical and histological changes of the brain, liver, and kidneys induced by titanium dioxide nanoparticles. BioMed Research International, 2021. doi:10.1155/2021/6632128
BANCROFT, J., and GAMBLE, M. 2013. Theories and practice of histological techniques. New York, London and Madrid: Churchil Livingstone, 7, 2768-2773.
BASHIR, D. W., RASHAD, M. M., AHMED, Y. H., DRWEESH, E. A., ELZAHANY, E. A., ABOU-EL-SHERBINI, K. S., and EBTIHAL, M. E. L., 2021. The ameliorative effect of nanoselenium on histopathological and biochemical alterations induced by melamine toxicity on the brain of adult male albino rats. Neurotoxicology, 86, 37-51. https://doi.org/10.1016/j.neuro.2021.06.006
BARANOWSKA-WÓJCIK, E., SZWAJGIER, D., OLESZCZUK, P., and WINIARSKA-MIECZAN, A., 2020. Effects of titanium dioxide nanoparticles exposure on human health—a review. Biological trace element research, 193, 118-129. https://doi.org/10.1007/s12011-019-01706-6
CHEN, W., BALAN, P., and POPOVICH, D. G., 2019. Review of ginseng anti-diabetic studies. Molecules, 24, 4501. https://doi.org/10.3390/molecules24244501
DINESH, P., YADAV, C. S., KANNADASAN, S., and RASOOL, M., 2017. Cytotoxicity and immunomodulatory effects of sol-gel combustion based titanium dioxide (TiO2) particles of large surface area on RAW 264.7 macrophages. Toxicology in Vitro, 43, 92-103. https://doi.org/10.1016/j.tiv.2017.06.006
EL‐BIALY, B. E., ABD ELDAIM, M. A., HASSAN, A., and ABDEL‐DAIM, M. M., 2020. Ginseng aqueous extract ameliorates lambda‐cyhalothrin‐acetamiprid insecticide mixture for hepatorenal toxicity in rats: role of oxidative stress‐mediated proinflammatory and proapoptotic protein expressions. Environmental toxicology, 35, 124-135. https://doi.org/10.1002/tox.22848
EL‐DEMERDASH, F. M., EL‐MAGD, M. A., and EL‐SAYED, R. A., 2021. Panax ginseng modulates oxidative stress, DNA damage, apoptosis, and inflammations induced by silicon dioxide nanoparticles in rats. Environmental Toxicology, 36, 1362-1374. https://doi.org/10.1002/tox.23132
ELLMAN, G. L. 1959. Tissue sulfhydryl groups. Archives of biochemistry and biophysics, 82, 70-77.
ELMOSALAMY, S. H., ELLEITHY, E. M., AHMED, Z. S. O., RASHAD, M. M., ALI, G. E., and HASSAN, N. H., 2022. Dysregulation of intraovarian redox status and steroidogenesis pathway in letrozole-induced PCOS rat model: a possible modulatory role of l-Carnitine. Beni-Suef University Journal of Basic and Applied Sciences, 11, 1-15. https://doi.org/10.1186/s43088-022-00329-6
FAGHANI, M., SAEDI, S., KHANAKI, K., and MOHAMMADGHASEMI, F., 2022. Ginseng alleviates folliculogenesis disorders via induction of cell proliferation and downregulation of apoptotic markers in nicotine-treated mice. Journal of Ovarian Research, 15, 14. https://doi.org/10.1186/s13048-022-00945-x
GERAETS, L., OOMEN, A. G., KRYSTEK, P., JACOBSEN, N. R., WALLIN, H., LAURENTIE, M., VERHAREN, H. W., BRANDON, E. F., and DE JONG, W. H., 2014. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Particle and fibre toxicology, 11, 1-21. https://doi.org/10.1186/1743-8977-11-30
GHAMRY, H. I., ABOUSHOUK, A. A., SOLIMAN, M. M., ALBOGAMI, S. M., TOHAMY, H. G., OKLE, O. S. E., ALTHOBAITI, S. A., REZK, S., FARRAG, F., and HELAL, A. I., 2022. Ginseng® alleviates malathion-induced hepatorenal injury through modulation of the biochemical, antioxidant, anti-apoptotic, and anti-inflammatory markers in male rats. Life, 12, 771. https://doi.org/10.3390/life12050771
GRISSA, I., ELGHOUL, J., EZZI, L., CHAKROUN, S., KERKENI, E., HASSINE, M., EL MIR, L., MEHDI, M., CHEIKH, H. B., and HAOUAS, Z., 2015. Anemia and genotoxicity induced by sub-chronic intragastric treatment of rats with titanium dioxide nanoparticles. Mutation research/genetic toxicology and environmental mutagenesis, 794, 25-31. http://dx.doi.org/doi:10.1016/j.mrgentox.2015.09.005
GRISSA, I., ELGHOUL, J., MRIMI, R., EL MIR, L., CHEIKH, H. B., and HORCAJADA, P., 2020. In deep evaluation of the neurotoxicity of orally administered TiO2 nanoparticles. Brain research bulletin, 155, 119-128. https://doi.org/10.1016/j.brainresbull.2019.10.005
GUI, S., ZHANG, Z., ZHENG, L., CUI, Y., LIU, X., LI, N., SANG, X., SUN, Q., GAO, G., and CHENG, Z., 2011. Molecular mechanism of kidney injury of mice caused by exposure to titanium dioxide nanoparticles. Journal of hazardous materials, 195, 365-370. https://doi.org/10.1016/j.jhazmat.2011.08.055
GUICCIARDI, M. E., and GORES, G. J., 2013. Complete lysosomal disruption: a route to necrosis, not to the inflammasome. Cell Cycle, 12, 1995-1995. https://doi.org/10.4161/cc.25317
HAMIDA, R. S., ALI, M. A., GODA, D. A., KHALIL, M. I., and AL-ZABAN, M. I., 2020. Novel biogenic silver nanoparticle-induced reactive oxygen species inhibit the biofilm formation and virulence activities of methicillin-resistant Staphylococcus aureus (MRSA) strain. Frontiers in bioengineering and biotechnology, 8, 433. https://doi.org/10.3389/fbioe.2020.00433
HASHIM, A. R., BASHIR, D. W., YASIN, N. A., RASHAD, M. M., and EL‐GHARBAWY, S. M., 2022. Ameliorative effect of N‐acetylcysteine on the testicular tissue of adult male albino rats after glyphosate‐based herbicide exposure. Journal of Biochemical and Molecular Toxicology, 36, e22997. https://doi.org/10.1002/jbt.22997
HASSAN, N., RASHAD, M., ELLEITHY, E., SABRY, Z., ALI, G., and ELMOSALAMY, S., 2023. L-Carnitine alleviates hepatic and renal mitochondrial-dependent apoptotic progression induced by letrozole in female rats through modulation of Nrf-2, Cyt c and CASP-3 signaling. Drug and Chemical Toxicology, 46, 357-368. https://doi.org/10.1080/01480545.2022.2039180
HELMY, A. M., SHARAF-EL-DIN, N. A., ABD-EL-MONEIM, R. A., and ROSTOM, D. M., 2015. Histological study of the renal cortical proximal and distal tubules in adult male albino rats following prolonged administration of titanium dioxide nanoparticles and the possible protective role of l-carnosine. The Egyptian Journal of Histology, 38, 126-142. https://doi.org/10.1097/01.EHX.0000461301.78387.2f
HONG, F., WU, N., GE, Y., ZHOU, Y., SHEN, T., QIANG, Q., ZHANG, Q., CHEN, M., WANG, Y., and WANG, L., 2016. Nanosized titanium dioxide resulted in the activation of TGF‐β/S mads/p38 MAPK pathway in renal inflammation and fibration of mice. Journal of Biomedical Materials Research Part A, 104, 1452-1461.https://doi.org/10.1002/jbm.a.35678
HUU TUNG, N., UTO, T., MORINAGA, O., KIM, Y. H., and SHOYAMA, Y., 2012. Pharmacological effects of ginseng on liver functions and diseases: a minireview. Evidence-Based Complementary and Alternative Medicine, 2012. https://doi.org/10.1155/2012/173297
JIN, D., ZHANG, Y., ZHANG, Y., DUAN, L., ZHOU, R., DUAN, Y., SUN, Y., LIAN, F., and TONG, X., 2021. Panax ginseng cA Mey. As medicine: The potential use of panax ginseng cA Mey. As a remedy for kidney protection from a pharmacological perspective. Frontiers in Pharmacology, 12, 734151. https://doi.org/10.3389/fphar.2021.734151
JURÍKOVÁ, M., DANIHEL, Ľ., POLÁK, Š., and VARGA, I., 2016. Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochem, 118, 544-52. https://doi.org/10.1016/j.acthis.2016.05.002
KIM, D.-H., KUNDU, J., CHAE, I. G., LEE, J. K., HEO, J. S., and CHUN, K.-S., 2019. Titanium dioxide nanoparticles induce COX-2 expression through ROS generation in human periodontal ligament cells. The Journal of Toxicological Sciences, 44, 335-345. https://doi.org/10.2131/jts.44.335
KIM, J.-H., 2018. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. Journal of ginseng research, 42, 264-269. https://doi.org/10.1016/j.jgr.2017.10.004
KUDUVALLI, S. S., DAISY, P. S., VAITHY, A., PURUSHOTHAMAN, M., RAMACHANDRAN MURALIDHARAN, A., AGIESH, K. B., MEZGER, M., ANTONY, J. S., SUBRAMANI, M., and DUBASHI, B. 2023. A combination of metformin and epigallocatechin gallate potentiates glioma chemotherapy in vivo. Frontiers in Pharmacology, 14, 1096614.https://doi.org/10.3389/fphar.2023.1096614
KUMAR, S., MEENA, R., and PAULRAJ, R., 2016. Role of macrophage (M1 and M2) in titanium-dioxide nanoparticle-induced oxidative stress and inflammatory response in rat. Applied biochemistry and biotechnology, 180, 1257-1275. https://doi.org/10.1007/s12010-016-2165-x
L'AZOU, B., HENGE-NAPOLI, M.-H., MINARO, L., MIRTO, H., BARROUILLET, M.-P., and CAMBAR, J., 2002. Effects of cadmium and uranium on some in vitro renal targets. Cell biology and toxicology, 18, 329-340. https://doi.org/10.1023/A:1019536115152
LATIF, M. A., JABEEN, F., ALI, M., RASUL, A., NAZ, S., and AKRAM, M., 2019. Neurotoxic effects of titanium dioxide nanoparticles on the brain of male sprague dawley rats. Pak. J. Pharm. Sci, 32, 2311-2316.
LEE, Y. K., CHIN, Y.-W., and CHOI, Y. H., 2013. Effects of Korean red ginseng extract on acute renal failure induced by gentamicin and pharmacokinetic changes by metformin in rats. Food and chemical toxicology, 59, 153-159. https://doi.org/10.1016/j.fct.2013.05.025
LI, N., DUAN, Y., HONG, M., ZHENG, L., FEI, M., ZHAO, X., WANG, J., CUI, Y., LIU, H., and CAI, J., 2010. Spleen injury and apoptotic pathway in mice caused by titanium dioxide nanoparticules. Toxicology letters, 195, 161-168. https://doi.org/10.1016/j.toxlet.2010.03.1116
LIU, R., ZHANG, X., PU, Y., YIN, L., LI, Y., ZHANG, X., LIANG, G., LI, X., and ZHANG, J., 2010. Small-sized titanium dioxide nanoparticles mediate immune toxicity in rat pulmonary alveolar macrophages in vivo. Journal of nanoscience and nanotechnology, 10, 5161-5169. https://doi.org/10.1166/jnn.2010.2420
LIVAK, K. J., and SCHMITTGEN, T. D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 25, 402-408. https://doi.org/10.1006/meth.2001.1262
MAHADY, G. B., GYLLENHAAL, C., FONG, H. H., and FARNSWORTH, N. R., 2000. Ginsengs: a review of safety and efficacy. Nutrition in clinical care, 3, 90-101. https://doi.org/10.1046/j.1523-5408.2000.00020.x
MAHER, D. A., EL-TAHAWY, N. F., HUSSIEN, A., and MAHMOUD, A. S., 2023. Reno-protective Role of Ginseng in Counteracting the Long-term Omeprazole Induced Adverse Effects in Albino Rats via Modulation of Inflammation, Apoptosis and Fibrosis. Minia Journal of Medical Research, 34, 114-125. 10.21608/MJMR.2023.182039.1255
MÁRQUEZ-RAMÍREZ, S. G., DELGADO-BUENROSTRO, N. L., CHIRINO, Y. I., IGLESIAS, G. G., and LÓPEZ-MARURE, R., 2012. Titanium dioxide nanoparticles inhibit proliferation and induce morphological changes and apoptosis in glial cells. Toxicology, 302, 146-56. https://doi.org/10.1016/j.tox.2012.09.005
MEENA, R., and PAULRAJ, R., 2012. Oxidative stress mediated cytotoxicity of TiO2 nano anatase in liver and kidney of Wistar rat. Toxicological & Environmental Chemistry, 94, 146-163. https://doi.org/10.1080/02772248.2011.638441
MORGAN, A., GALAL, M. K., OGALY, H. A., IBRAHIM, M. A., ABD-ELSALAM, R. M., and NOSHY, P., 2017. Tiron ameliorates oxidative stress and inflammation in titanium dioxide nanoparticles induced nephrotoxicity of male rats. Biomedicine & pharmacotherapy, 93, 779-787. https://doi.org/10.1016/j.biopha.2017.07.006
NIU, L., SHAO, M., LIU, Y., HU, J., LI, R., XIE, H., ZHOU, L., SHI, L., ZHANG, R., and NIU, Y., 2017. Reduction of oxidative damages induced by titanium dioxide nanoparticles correlates with induction of the Nrf2 pathway by GSPE supplementation in mice. Chemico-Biological Interactions, 275, 133-144. https://doi.org/10.1016/j.cbi.2017.07.025
NO, O. T. 2016. 475: mammalian bone marrow chromosomal aberration test. OECD Guidelines for the Testing of Chemicals, Section, 4.
NOSHY, P. A., YASIN, N. A., RASHAD, M. M., SHEHATA, A. M., SALEM, F. M., EL-SAIED, E. M., and MAHMOUD, M. Y., 2023. Zinc nanoparticles ameliorate oxidative stress and apoptosis induced by silver nanoparticles in the brain of male rats. NeuroToxicology, 95, 193-204. https://doi.org/10.1016/j.neuro.2023.02.005
OBERDÖRSTER, G., OBERDÖRSTER, E., and OBERDÖRSTER, J., 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental health perspectives, 113, 823-839. https://doi.org/10.1289/ehp.7339
OHKAWA, H., OHISHI, N., and YAGI, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical biochemistry, 95, 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
ORAZIZADEH, M., FAKHREDINI, F., MANSOURI, E., and KHORSANDI, L., 2014. Effect of glycyrrhizic acid on titanium dioxide nanoparticles-induced hepatotoxicity in rats. Chemico-biological interactions, 220, 214-221. https://doi.org/10.1016/j.cbi.2014.07.001
PARK, S. K., HYUN, S. H., IN, G., PARK, C.-K., KWAK, Y.-S., JANG, Y.-J., KIM, B., KIM, J.-H., and HAN, C.-K., 2021. The antioxidant activities of Korean Red Ginseng (Panax ginseng) and ginsenosides: A systemic review through in vivo and clinical trials. Journal of ginseng research, 45, 41-47. https://doi.org/10.1016/j.jgr.2020.09.006
POWELL, J. J., FARIA, N., THOMAS-MCKAY, E., and PELE, L. C., 2010. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. Journal of autoimmunity, 34, J226-J233. https://doi.org/10.1016/j.jaut.2009.11.006
RACUSEN, L. C. 1995. The histopathology of acute renal failure. New Horiz, 3, 662-8. https://doi.org/10.1007/978-94-011-5482-6_50
ROSS, M. H., and PAWLINA, W., 2007. Histology: Interactive atlas to accompany histology: A text and atlas; with correlated cell and molecular biology. Cd-rom, Lippincott, Williams & Wilkins.
SADEK, E. M., SALAMA, N. M., ISMAIL, D. I., and ELSHAFEI, A. A., 2016. Histological study on the protective effect of endogenous stem-cell mobilization in Adriamycin-induced chronic nephropathy in rats. Journal of microscopy and ultrastructure, 4, 133-142. https://doi.org/10.1016/j.jmau.2015.12.003
SALEM, M. M., ALTAYEB, Z. M., and EL-MAHALAWAY, A. M., 2017. Histological and immunohistochemical study of titanium dioxide nanoparticle effect on the rat renal cortex and the possible protective role of lycopene. Egyptian Journal of Histology, 40, 80-93. 10.21608/EJH.2017.3700
SALLAM, M. F., AHMED, H. M., EL-NEKEETY, A. A., DIAB, K. A., ABDEL-AZIEM, S. H., SHARAF, H. A., and ABDEL-WAHHAB, M. A. 2023. Assessment of the Oxidative Damage and Genotoxicity of Titanium Dioxide Nanoparticles and Exploring the Protective Role of Holy Basil Oil Nanoemulsions in Rats. Biological Trace Element Research, 201, 1301-1316. https://doi.org/10.1007/s12011-022-03228-0
SALMINEN, A., HUUSKONEN, J., OJALA, J., KAUPPINEN, A., KAARNIRANTA, K., and SUURONEN, T., 2008. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing research reviews, 7, 83-105. https://doi.org/10.1016/j.arr.2007.09.002
SHAH, S. N. A., SHAH, Z., HUSSAIN, M., and KHAN, M., 2017. Hazardous effects of titanium dioxide nanoparticles in ecosystem. Bioinorganic chemistry and applications, 2017. https://doi.org/10.1155/2017/4101735
SHIRANI, M., KHORSANDI, L., and ALIDADI, H., 2020. Quercetin effects on hepatotoxicity induced by titanium dioxide nanoparticles in rats. Jundishapur Journal of Natural Pharmaceutical Products, 15.https://doi.org/10.5812/jjnpp.83523
SHUKLA, R. K., KUMAR, A., VALLABANI, N. V. S., PANDEY, A. K., and DHAWAN, A., 2014. Titanium dioxide nanoparticle-induced oxidative stress triggers DNA damage and hepatic injury in mice. Nanomedicine, 9, 1423-1434. https://doi.org/10.2217/nnm.13.100
SIBARANI, J., TJAHJODJATI, T., ATIK, N., RACHMADI, D., and MUSTAFA, A., 2020. Urinary Cytochrome C and Caspase-3 as novel biomarker of renal function impairment in unilateral ureteropelvic junction obstruction model of wistar rats. Researchand Reports in Urology, 217-224. https://doi.org/10.2147/RRU.S259237
SONG, S. B., TUNG, N. H., QUANG, T. H., NGAN, N. T. T., KIM, K. E., and KIM, Y. H., 2012. Inhibition of TNF-α-mediated NF-κB transcriptional activity in HepG2 cells by dammarane-type saponins from Panax ginseng leaves. Journal of Ginseng Research, 36, 146. 10.5142/jgr.2012.36.2.146
SU, L.-J., ZHANG, J.-H., GOMEZ, H., MURUGAN, R., HONG, X., XU, D., JIANG, F., and PENG, Z.-Y., 2019. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative medicine and cellular longevity, 2019. https://doi.org/10.1155/2019/5080843
TAO, R., LU, K., ZONG, G., XIA, Y., HAN, H., ZHAO, Y., WEI, Z., and LU, Y., 2022. Ginseng polysaccharides: Potential antitumor agents. Journal of Ginseng Research. https://doi.org/10.1016/j.jgr.2022.07.002
VELMA, V., and TCHOUNWOU, P. B., 2010. Chromium-induced biochemical, genotoxic and histopathologic effects in liver and kidney of goldfish, Carassius auratus. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 698, 43-51. https://doi.org/10.1016/j.mrgentox.2010.03.014
VIEIRA, A., GRAMACHO, A., ROLO, D., VITAL, N., SILVA, M. J., and LOURO, H., 2022. Cellular and Molecular Mechanisms of Toxicity of Ingested Titanium Dioxide Nanomaterials. Nanotoxicology inSafety Assessment of Nanomaterials. Springer. https://doi.org/10.1007/978-3-030-88071-2_10
WANG, J., LI, N., ZHENG, L., WANG, S., WANG, Y., ZHAO, X., DUAN, Y., CUI, Y., ZHOU, M., and CAI, J., 2011. P38-Nrf-2 signaling pathway of oxidative stress in mice caused by nanoparticulate TiO 2. Biological Trace Element Research, 140, 186-197. https://doi.org/10.1007/s12011-010-8687-0
WANG, K., 2014. Molecular mechanisms of hepatic apoptosis. Cell death & disease, 5, e996-e996. https://doi.org/10.1038/cddis.2013.499
WANI, M. R., MAHESHWARI, N., and SHADAB, G., 2021. Eugenol attenuates TiO 2 nanoparticles-induced oxidative damage, biochemical toxicity and DNA damage in Wistar rats: an in vivo study. Environmental Science and Pollution Research, 28, 22664-22678. https://doi.org/10.1007/s11356-020-12139-3
WARIS, A., SHARIF, S., NAZ, S., MANZOOR, F., JAMIL, F., HUSSAIN, M., CHOI, Y. J., and PARK, Y.-K., 2023. Hepatotoxicity induced by metallic nanoparticles at the cellular level: A review. Environmental Engineering Research, 28. https://doi.org/10.4491/eer.2022.625
YANG, S., LI, F., LU, S., REN, L., BIAN, S., LIU, M., ZHAO, D., WANG, S., and WANG, J., 2022. Ginseng root extract attenuates inflammation by inhibiting the MAPK/NF-κB signaling pathway and activating autophagy and p62-Nrf2-Keap1 signaling in vitro and in vivo. Journal of Ethnopharmacology, 283, 114739. https://doi.org/10.1016/j.jep.2021.114739
YANG, Y., QIN, Z., ZENG, W., YANG, T., CAO, Y., MEI, C., and KUANG, Y., 2017. Toxicity assessment of nanoparticles in various systems and organs. Nanotechnology Reviews, 6, 279-289. https://doi.org/10.1515/ntrev-2016-0047
YASIN, N. A., EL-NAGGAR, M. E., AHMED, Z. S. O., GALAL, M. K., RASHAD, M. M., YOUSSEF, A. M., and ELLEITHY, E. M., 2022. Exposure to Polystyrene nanoparticles induces liver damage in rat via induction of oxidative stress and hepatocyte apoptosis. Environmental Toxicology and Pharmacology, 94, 103911. https://doi.org/10.1016/j.etap.2022.103911
YOUSEF, M. I., and HUSSIEN, H. M., 2015. Cisplatin-induced renal toxicity via tumor necrosis factor-α, interleukin 6, tumor suppressor P53, DNA damage, xanthine oxidase, histological changes, oxidative stress and nitric oxide in rats: protective effect of ginseng. Food and Chemical Toxicology, 78, 17-25. https://doi.org/10.1016/j.fct.2015.01.014
YU, T., YANG, Y., KWAK, Y.-S., SONG, G. G., KIM, M.-Y., RHEE, M. H., and CHO, J. Y., 2017. Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2. Journal of Ginseng Research, 41, 127-133. https://doi.org/10.1016/j.jgr.2016.02.001
ZEMAN, T., LOH, E. W., ČIERNÝ, D., and ŠERÝ, O., 2018. Penetration, distribution and brain toxicity of titanium nanoparticles in rodents' body: a review. IET nanobiotechnology, 12, 695-700. https://doi.org/10.1049/iet-nbt.2017.0109
ZIDAN, R., ELNEGRIS, H., and WAHDAN, R., 2015. Evaluating the protective role of ginseng against histological and biochemical changes induced by aflatoxin B1 in the renal convoluted tubules of adult male albino rats. J Clin Exp Pathol, 5, 2161-0681.1000253. 10.4172/2161-0681.1000253