Altememy, M., Saeed, M. (2023). Genetic sequence and phylogenetic analysis of Trichomonos gallinae in racing pigeons at Mosul city, Iraq. Journal of Applied Veterinary Sciences, 8(4), 20-27. doi: 10.21608/javs.2023.217967.1245
Mohammed H. Altememy; Mohammed G. Saeed. "Genetic sequence and phylogenetic analysis of Trichomonos gallinae in racing pigeons at Mosul city, Iraq". Journal of Applied Veterinary Sciences, 8, 4, 2023, 20-27. doi: 10.21608/javs.2023.217967.1245
Altememy, M., Saeed, M. (2023). 'Genetic sequence and phylogenetic analysis of Trichomonos gallinae in racing pigeons at Mosul city, Iraq', Journal of Applied Veterinary Sciences, 8(4), pp. 20-27. doi: 10.21608/javs.2023.217967.1245
Altememy, M., Saeed, M. Genetic sequence and phylogenetic analysis of Trichomonos gallinae in racing pigeons at Mosul city, Iraq. Journal of Applied Veterinary Sciences, 2023; 8(4): 20-27. doi: 10.21608/javs.2023.217967.1245
Genetic sequence and phylogenetic analysis of Trichomonos gallinae in racing pigeons at Mosul city, Iraq
Department of Pathology and Poultry Diseases, College of Veterinary Medicine, University of Mosul, Mosul, Iraq
Receive Date: 16 June 2023,
Revise Date: 22 July 2023,
Accept Date: 15 August 2023
Abstract
This is the first study in Mosul to use genetic sequencing technology to diagnose and document the type, strain, and genotype of Trichomonos gallinae in racing pigeon. It was distinguished by the geographical sequence at the Mosul Iraqi city. Thirty isolates of T. gallinae were chosen from a total of 56 that had been molecularly characterized to examine the extent to which these isolates matched in terms of genetic sequencing. The DNA- from T. gallinae parasite was extracted, and the master mix for all of the polymerization reaction components was created based on the needed quantities of the reaction components for each sample. The acquired sequences were matched to known sequences in databases to determine the trichomonos species parasite and strain responsible for the infection. The results of the DNA sequencing examination revealed that after the polymerase chain reaction amplification products were sent to Macrogen, Korea to determine the genetic variation of the local strains, the products of the small subunit rRNA-Gene and the reaction product of bp 194 of the Trichomonos gallinae parasite were sent to the National Center for Biotechnology Information NCBI Gen Bank for recording. Based on the small partial ribosomal RNA according to blast in GenBank of of NCBI, the percentage of match in the genetic sequence was 100% between the genetic sequence in Mosul and the genetic sequences in Brazil and Portugal. France, Spain, Iran, Poland, Prague, Hungary, Australia, and the United States are among the countries involved. The Trichomonas gallinae genetic sequence in racing pigeons from Mosul has been discovered for the first time in the Gen Bank database, revealing a 100% match with other countries' sequences. This discovery reveals the pathogen's worldwide dissemination and interconnection, aiding in developing effective diagnostic procedures, preventive measures, and targeted treatments. The discovery also emphasizes the need for cooperation in monitoring and regulating the spread of the infection, supporting a collaborative strategy against avian diseases.
AL JUNID, S.A.M., ABD MAJID, Z., and HALIM, A.K., 2008. High speed DNA sequencing accelerator using FPGA. In 2008International Conference on Electronic Design (pp. 1-4). IEEE.IEEE. https://doi.org/10.1109/ICED.2008.4786759
ALBESHR, M.F., and ALREFAEI, A.F., 2019. Prevalence and genotyping of Trichomonas gallinae in Riyadh, Saudi Arabia. BioRxiv, p.675033. https://doi.org/10.1101/675033
AL-HASNAWY, M.H., and RABEE, A.H., 2023. A review on trichomonas species infection in humans and animals in Iraq. Iraqi Journal of Veterinary Sciences, 37(2), pp.305-313. https://doi.org/10.33899/ijvs.2022.133966.2324
AMIN, A., BILIC, I., LIEBHART, D., and HESS, M., 2014. Trichomonads in birds–a review. Parasitology, 141(6), pp.733-747.https://doi.org/10.1017/S0031182013002096
BORJI, H., RAZMI, G.H., MOVASSAGHI, A.H., MOGHADDAS, E., and AZAD, M., 2011. Prevalence and pathological lesion of Trichomonas gallinae in pigeons of Iran. Journal of Parasitic Diseases, 35, pp.186-189. https://doi.org/10.1007/s12639-011-0047-2
CHEN, D.Q., LUO, X.Y., LI, Q.Q., PAN, J.C., ZHANG, H., GU, Y.Y., KAN, Z.Z., HUANG, J.M., FANG, Z., LIU, X.C., and GU, Y.F., 2022. Molecular prevalence of Tetratrichomonas gallinarum and Trichomonas gallinae in three domestic free-range poultry breeds in Anhui Province, China. Parasitology Research, 121(10), pp.2841-2848. https://doi.org/10.1007/s00436-022-07617-1
COLLÁNTES-FERNÁNDEZ E., FORT M.C., ORTEGA-MORA L.M., and SCHARES G., 2018. Trichomonas. Parasitic Protozoa of Farm Animals and Pets:313-88. https://doi.org/10.1007/978-3-319-70132-5_14
CONRAD, M.D., GORMAN, A.W., SCHILLINGER, J.A., FIORI, P.L., ARROYO, R., MALLA, N., DUBEY, M.L., GONZALEZ, J., BLANK, S., SECOR, W.E., and CARLTON, J.M., 2012. Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis. PLoS Neglected Tropical Diseases, 6(3), p.e1573.https://doi.org/10.1371/journal.pntd.0001573
ESCALANTE, A.A., CEPEDA, A.S., and PACHECO, M.A., 2022. Why Plasmodium vivax and Plasmodium falciparum are so different? A tale of two clades and their species diversities. Malaria Journal, 21(1), pp.1-19.. 2022 Dec;21(1):1-9. https://doi.org/10.1186/s12936-022-04130-9
FRANÇA, L.T., CARRILHO, E., and KIST, T.B., 2002. A review of DNA sequencing techniques. Quarterly reviews of biophysics, 35(2), pp.169-200. https://doi.org/10.1017/S0033583502003797
FELLEISEN, R.S.J. 1997. Comparative sequences analysis of 5.8S rRNA genes and internal transcribed spacer (ITS) regions of Trichomonadid protozoa. Parasitology, 115: 111–119.
GHATAK, S., MUTHUKUMARAN, R.B., and NACHIMUTHU, S.K., 2013. A simple method of genomic DNA extraction from human samples for PCR-RFLP analysis. Journal of biomolecular techniques: JBT, 24(4), p.224.
GERHOLD, R.W., YABSLEY, M.J., SMITH, A.J., OSTERGAARD, E., MANNAN, W., CANN, J.D., and FISCHER, J.R., 2008. Molecular characterization of the Trichomonas gallinae morphologic complex in the United States. Journal of Parasitology, 94(6), pp.1335-1341. https://doi.org/10.1645/GE-1585.1
GRABENSTEINER, E., BILIC, I., KOLBE, T., and HESS, M., 2010. Molecular analysis of clonal trichomonad isolates indicate the existence of heterogenic species present in different birds and within the same host. Veterinary Parasitology, 172(1-2), pp.53-64.b https://doi.org/10.1016/j.vetpar.2010.04.015
INZANA, T.J., MENG, X.J., OPRIESSNIG, T., and BALLWEBER, L., 2016. Commercial methods in clinical veterinary microbiology. Manual of Commercial Methods in Clinical Microbiology: International Edition, pp.346-376. https://doi.org/10.1002/9781119021872.ch19
JENSEN, M.K. 2017. Wildlife in an anthropogenically-driven world: how humans have shaped the distribution, genetic composition, and gene expression of North American forest hawks (Genus: Accipiter). West Virginia University(. www.ncbi.nlm.nih.gov/ GenBank
MARTÍNEZ-DÍAZ, R.A., PONCE-GORDO, F., RODRÍGUEZ-ARCE, I., DEL MARTÍNEZ-HERRERO, M.C., GONZÁLEZ, F.G., MOLINA-LÓPEZ, R.Á., and GÓMEZ-MUÑOZ, M.T., 2015. Trichomonas gypaetinii n. sp., a new trichomonad from the upper gastrointestinal tract of scavenging birds of prey. Parasitology Research, 114, pp.101-112. https://doi.org/10.1007/s00436-014-4165-5
MOHAMED, H.M., SAAD, A.S., KHALIFA, M.M., ABDEL-MAOGOOD, S.Z., AWADALLA, S.M., and MOUSA, W.M., 2023 . Detection and molecular characterization of Trichomonos gallinae recovered from domestic pigeons in Egypt. Parasitology Research. ;122(1):257-63 https://doi.org/10.1007/s00436-022-07724-z
NOVÁKOVÁ, E., HYPŠA, V., and MORAN, N.A., 2009. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC microbiology, 9, pp.1-14.;9:1-4. https://doi.org/10.1186/1471-2180-9-143
QUILLFELDT, P., SCHUMM, Y.R., MAREK, C., MADER, V., FISCHER, D., and MARX, M., 2018. Prevalence and genotyping of Trichomonas infections in wild birds in central Germany. PloS one, 13(8), p.e0200798. https://doi.org/10.1371/journal.pone.0200798
RAMSUBEIK, S., CROSSLEY, B., JERRY, C., BLAND, M., REJMANEK, D., SHIVAPRASAD, H.L., and STOUTE, S., 2023. Molecular and retrospective analysis of pigeon paramyxovirus type 1 infections in confinement-reared pigeons (Columbia livia); 2010–2020. Journal of Applied Poultry Research, 32(2), p.100343. https://doi.org/10.1016/j.japr.2023.100343
REAL, J., MANOSA, S., and MUNOZ, E., 2000. Trichomoniasis in a Bonelli's eagle population in Spain. Journal of Wildlife Diseases, 36(1), pp.64-70. https://doi.org/10.7589/0090-3558-36.1.64
RENTERÍA-SOLÍS Z., NGUYEN-HO-BAO T., TAHA S., and DAUGSCHIES A., 2020. A SYBR green I real-time polymerase chain reaction (PCR) assay for detection and quantification of Trichomonos gallinae. Parasitology research, Nov;119(11):3909-13 https://doi.org/10.1007/s00436-020-06887-x
SAIKIA, M., BHATTACHARJEE, K., SARMAH, P.C., DEKA, D.K., BURAGOHAIN, L.M., and TAMULY, S., 2023. Molecular detection and characterization of Trichomonas gallinae isolated from pigeon and chicken of Assam, India.https://www.entomoljournal.com/archives/2023/vol11issue1/PartB/10-6-43-493.pdf
SAIKIA, M., BHATTACHARJEE, K., SARMAH, P.C., DEKA, D.K., BURAGOHAIN, L.M., and TAMULY, S., 2023. Molecular detection and characterization of Trichomonas gallinae isolated from pigeon and chicken of Assam, India.
SANTOS, H.M., TSAI, C.Y., CATULIN, G.E.M., TRANGIA, K.C.G., TAYO, L.L., LIU, H.J., and CHUANG, K.P., 2020. Common bacterial, viral, and parasitic diseases in pigeons (Columba livia): A review of diagnostic and treatment strategies. Veterinary Microbiology, 247, p.108779. https://doi.org/10.1016/j.vetmic.2020.108779
SCHOCH, C.L., SEIFERT, K.A., HUHNDORF, S., ROBERT, V., SPOUGE, J.L., LEVESQUE, C.A., and CHEN, W., 2012. Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List, Bolchacova, E. and Voigt, K., 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the national academy of Sciences, 109(16), pp.6241-6246. https://doi.org/10.1073/pnas.1207508109
SINT, D., RASO, L., and TRAUGOTT, M., 2012. Advances in multiplex PCR: balancing primer efficiencies and improving detection success. Methods in Ecology and Evolution, 3(5), pp.898-905. https://doi.org/10.1111/j.2041-210X.2012.00215.x
TSIODRAS, S., KELESIDIS, T., KELESIDIS, I., BAUCHINGER, U., and FALAGAS, M.E., 2008. Human infections associated with wild birds. Journal of Infection, 56(2), pp.83-98. https://doi.org/10.1016/j.jinf.2007.11.001
WIKELSKI, M., ARRIERO, E., GAGLIARDO, A., HOLLAND, R.A., HUTTUNEN, M.J., JUVASTE, R., MUELLER, I., TERTITSKI, G., THORUP, K., WILD, M., and ALANKO, M., 2015. True navigation in migrating gulls requires intact olfactory nerves. Scientific reports, 5(1), p.17061. https://doi.org/10.1038/srep17061.www.ncbi.nlm.nih.gov/ Gen Bank/
YE, J., COULOURIS, G., ZARETSKAYA, I., CUTCUTACHE, I., ROZEN, S., and MADDEN, T.L., 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC bioinformatics, 13, pp.1-11. https://doi.org/10.1186/1471-2105-13-134.