• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Indexing and Abstracting
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of Applied Veterinary Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 10 (2025)
Volume Volume 9 (2024)
Volume Volume 8 (2023)
Volume Volume 7 (2022)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 6 (2021)
Volume Volume 5 (2020)
Volume Volume 4 (2019)
Volume Volume 3 (2018)
Volume Volume 2 (2017)
Volume Volume 1 (2016)
Al-Sabawi, A., Jwher, D. (2022). The relationship between antibiotics resistance and biofilm formation for Escherichia coli isolated from sheep in Nineveh province, Iraq. Journal of Applied Veterinary Sciences, 7(4), 28-33. doi: 10.21608/javs.2022.149020.1160
A.H. Al-Sabawi; Dh.M. Jwher. "The relationship between antibiotics resistance and biofilm formation for Escherichia coli isolated from sheep in Nineveh province, Iraq". Journal of Applied Veterinary Sciences, 7, 4, 2022, 28-33. doi: 10.21608/javs.2022.149020.1160
Al-Sabawi, A., Jwher, D. (2022). 'The relationship between antibiotics resistance and biofilm formation for Escherichia coli isolated from sheep in Nineveh province, Iraq', Journal of Applied Veterinary Sciences, 7(4), pp. 28-33. doi: 10.21608/javs.2022.149020.1160
Al-Sabawi, A., Jwher, D. The relationship between antibiotics resistance and biofilm formation for Escherichia coli isolated from sheep in Nineveh province, Iraq. Journal of Applied Veterinary Sciences, 2022; 7(4): 28-33. doi: 10.21608/javs.2022.149020.1160

The relationship between antibiotics resistance and biofilm formation for Escherichia coli isolated from sheep in Nineveh province, Iraq

Article 5, Volume 7, Issue 4, October 2022, Page 28-33  XML PDF (675.09 K)
Document Type: Original Article
DOI: 10.21608/javs.2022.149020.1160
View on SCiNiTO View on SCiNiTO
Authors
A.H. Al-Sabawi email orcid ; Dh.M. Jwher
Dep. of Vet. Public Health, College of Vet. Med. University of Mosul, Mosul, Iraq
Receive Date: 04 July 2022,  Revise Date: 08 August 2022,  Accept Date: 18 August 2022 
Abstract
The study aimed to determine the relationship between antibiotic resistance and the ability to produce biofilm of E.coli isolated from sheep in Nineveh Governorate. One hundred four fecal swabs were collected from healthy sheep from 1st February to 5th March 2022. Standard microbiological methods include culture on eosin methylene blue agar (EMB) and MacConkey agar, confirmed by Gram’s Stain and biochemical tests, then polymerase chain reaction (PCR) assay for the specific gene of E.coli (uidA). Antibacterial resistance for 12 types of antibiotics and biofilm production tests were done by Congo red agar. The results showed that 92 samples at a rate of 88.46% were positive for the E.coli isolates; the study also showed that 71 isolates at a rate of 77.17% of E.coli isolates could produce biofilm. The study concluded that biofilm-producing E.coli  in both forms strong and weak appear higher resistant to antibiotics other than the non-productive ones. Therefore, searching for other methods to test bacterial sensitivity to antibiotics that consider many factors such as biofilm production and extended-spectrum beta-lactamases is necessary.  
Keywords
Antibiotic resistance; biofilm production; E.coli; Iraq; Nineveh province; Sheep
Main Subjects
Veterinary hygiene and Epidemiology
References
ALIZADE, H. 2018. Escherichia coli in Iran: An overview of antibiotic resistance: A review article. Iranian journal of public health, 47(1), p.1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5756583/pdf/IJPH-47-1.pdf

ANANDKUMAR, H., NIGUDGI, A., HAJARE, V., and BIRADAR, S., 2021. Evaluation of cell surface hydrophobicity and biofilm formation as pathogenic determinants among ESBL producing uropathogenic Escherichia coli. Indian Journal of Microbiology Research, 8(4), pp.263–267.

        http://dx.doi.org/10.18231/j.ijmr.2021.054

BEHZADI, P., ZSOLDINÉ URBÁN, E., and GAJDÁCS, M., 2020. Association between Biofilm-Production and Antibiotic Resistance in Uropathogenic Escherichia coli (UPEC).http://dx.doi.org/10.3390/diseases8020017

BELOIN, C., ROUX, A., and GHIGO, J.M., 2008. Escherichia coli biofilm. Bacterial biofilm, pp.249-289. http://dx.doi.org/10.1007/978-3-540-75418-3_12

COLLINS, R., and CARSON, A., 2022. Watery mouth disease in lambs. Veterinary Record, 190(1), pp.28-29. http://dx.doi.org/10.1002/vetr.1347

COSTERTON, J.W. 1995. Overview of microbial biofilm. Journal of Industrial Microbiology and Biotechnology, 15(3), pp.137-140. http://dx.doi.org/10.1007/bf01569816

COSTERTON, J.W., STEWART, P.S., and GREENBERG, E.P., 1999. Bacterial biofilm: a common cause of persistent infections. Science, 284(5418), pp.1318-1322. http://dx.doi.org/10.1126/science.284.5418.1318

DE LA FUENTE-NÚÑEZ, C., REFFUVEILLE, F., FERNÁNDEZ, L., and HANCOCK, R.E., 2013. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Current opinion in microbiology, 16(5), pp.580-589. http://dx.doi.org/10.1016/j.mib.2013.06.013

ETEFIA, E. 2021. Virulence Factors of Uropathogenic Escherichia coli.http://dx.doi.org/10.5772/intechopen.99891

FERENS, W.A., and HOVDE, C.J., 2011. Escherichia coli O157: H7: animal reservoir and sources of human infection. Foodborne pathogens and disease, 8(4), pp.465-487. http://dx.doi.org/10.1089/fpd.2010.0673

FERONE, M., GOWEN, A., FANNING, S., and SCANNELL, A.G., 2020. Microbial detection and identification methods: Bench top assays to omics approaches. Comprehensive Reviews in Food Science and Food Safety, 19(6), pp.3106-3129. http://dx.doi.org/10.1111/1541-4337.12618

GAJDÁCS, M., ÁBRÓK, M., LÁZÁR, A., and BURIÁN, K., 2020. Differential epidemiology and antibiotic resistance of lactose-fermenting and non-fermenting Escherichia coli: Is it just a matter of taste?. Biologia Futura, 71(1), pp.175-182.

       http://dx.doi.org/10.1007/s42977-020-00016-6

GAJDÁCS, M., BÁTORI, Z., ÁBRÓK, M., LÁZÁR, A., and BURIÁN, K., 2020. Characterization of resistance in gram-negative urinary isolates using existing and novel indicators of clinical relevance: a 10-year data analysis. Life, 10(2), p.16.

       http://dx.doi.org/10.3390/life10020016

GIAOURIS, E., HEIR, E., HÉBRAUD, M., CHORIANOPOULOS, N., LANGSRUD, S., MØRETRØ, T., HABIMANA, O., DESVAUX, M., RENIER, S., and NYCHAS, G.J., 2014. Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Science, 97(3), pp.298-309. http://dx.doi.org/10.1016/j.meatsci.2013.05.023

HASSAN, N., SHEIKH, G.N., MALIK, H.U., SHAHEEN, M., and WILLAYAT, M.M., 2013. Hemato-biochemical and therapeutic studies on Escherichia coli associated with concurrent enteric infection in lambs. Veterinary World, 6(11), p.870. http://dx.doi.org/10.14202/vetworld.2013.870-873

HORAKOVA, K., MLEJNKOVA, H., and MLEJNEK, P., 2008. Specific detection of Escherichia coli isolated from water samples using polymerase chain reaction targeting four genes: cytochrome bd complex, lactose permease, β‐d‐glucuronidase, and β‐d‐galactosidase. Journal of applied microbiology ,105(4), pp.970-976.

       http://dx.doi.org/10.1111/j.1365-2672.2008.03838.x

JIN, X., and MARSHALL, J.S., 2020. Mechanics of biofilm formed of bacteria with fimbriae appendages. PLoS One, 15(12), p.e0243280. http://dx.doi.org/10.1371/journal.pone.0243280

JORGENSEN, J.H., and TURNIDGE, J.D., 2015. Susceptibility test methods: dilution and disk diffusion methods. Manual of clinical microbiology, pp.1253-1273. http://dx.doi.org/10.1128/9781555817381.ch71

KARAHUTOVÁ, L., MANDELÍK, R., and BUJŇÁKOVÁ, D., 2021. Antibiotic-Resistant and Biofilm-Associated Escherichia coli Isolates from Diarrheic and Healthy Dogs. Microorganisms, 9(6), p.1334. http://dx.doi.org/10.3390/microorganisms9061334

KJELSTRUP, C.K., BARBER, A.E., NORTON, J.P., MULVEY, M.A., and L’ABÉE-LUND, T.M., 2017. Escherichia coli O78 isolated from septicemic lambs shows high pathogenicity in a zebrafish model. Veterinary research, 48(1), pp.1-8. http://dx.doi.org/10.1186/s13567-016-0407-0

KONRADT, G., BASSUINO, D.M., PRATES, K.S., BIANCHI, M.V., SNEL, G.G., SONNE, L., DRIEMEIER, D., and PAVARINI, S.P., 2017. Doenças infecciosas supurativas do sistema nervoso central de ruminantes domésticos. Pesquisa Veterinária Brasileira, 37(8), pp.820-828.

       http://dx.doi.org/10.1590/s0100-736x2017000800007

MAEUSLI, M., LEE, B., MILLER, S., REYNA, Z., LU, P., YAN, J., ULHAQ, A., SKANDALIS, N., SPELLBERG, B., and LUNA, B., 2020. Horizontal gene transfer of antibiotic resistance from Acinetobacter baylyi to Escherichia coli on lettuce and subsequent antibiotic resistance transmission to the gut microbiome. Msphere, 5(3), pp.e00329-20. http://dx.doi.org/10.1128/msphere.00329-20

MATHUR, T., SINGHAL, S., KHAN, S., UPADHYAY, D.J., FATMA, T., and RATTAN, A., 2006. Detection of biofilm formation among the clinical isolates of staphylococci: an evaluation of three different screening methods. Indian journal of medical microbiology, 24(1), pp.25-29. http://dx.doi.org/10.4103/0255-0857.19890

MICHAUD, C.M. 2009. Global burden of infectious diseases. Encyclopedia of microbiology, p.444. http://dx.doi.org/10.1016/b978-012373944-5.00185-1

MOYO, S.J., MASELLE, S.Y., MATEE, M.I., LANGELAND, N., and MYLVAGANAM, H., 2007. Identification of diarrheagenic Escherichia coli isolated from infants and children in Dar es Salaam, Tanzania. BMC infectious diseases, 7(1), pp.1-7. http://dx.doi.org/10.1186/1471-2334-7-92

MUNNS, K.D., SELINGER, L.B., STANFORD, K., GUAN, L., CALLAWAY, T.R., and MCALLISTER, T.A. 2015. Perspectives on super-shedding of Escherichia coli O157: H7 by cattle. Foodborne pathogens and disease, 12(2), pp.89-103. http://dx.doi.org/10.1089/fpd.2014.1829

NADELL, C.D., and BASSLER, B.L., 2011. A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilm. Proceedings of the National Academy of Sciences, 108(34), pp.14181-14185. http://dx.doi.org/10.1073/pnas.1111147108

NAKAO, R., RAMSTEDT, M., WAI, S.N., and UHLIN, B.E., 2012. Enhanced biofilm formation by Escherichia coli LPS mutants defective in Hep biosynthesis. PloS one, 7(12), p.e51241. http://dx.doi.org/10.1371/journal.pone.0051241

NATARO, J.P., and KAPER, J.B., 1998. Diarrheagenic Escherichia coli. Clinical microbiology reviews, 11(1), pp.142-201. http://dx.doi.org/10.1128/cmr.11.1.142

NIEDERDORFER, R., BESEMER, K., BATTIN, T.J., and PETER, H., 2017. Ecological strategies and metabolic trade-offs of complex environmental biofilm. npj Biofilm and Microbiomes, 3(1), pp.1-6. http://dx.doi.org/10.1038/s41522-017-0029-y.

PADHI, S. 2011. New Delhi metallo-beta-lactamase: a weapon for the newly emerging drug-resistant bacteria. Indian Journal of Medical Sciences, 65(8), pp.317-317.http://dx.doi.org/10.4103/0019-5359.107767

POOVENDRAN, P., VIDHYA, N., and MURUGAN, S., 2011. Antimicrobial activity of Mirabilis jalapa and Dichrotachys cinerea against biofilm and extended spectrum of beta-lactamase (ESBL) producing uropathogenic Escherichia coli. Afr. J. Microbiol. Res, 5, pp.3620-3623.

       http://dx.doi.org/10.5897/ajmr11.116

QUINN, P.J., MARKEY, B.K., LEONARD, F.C., HARTIGAN, P., FANNING, S., and FITZPATRICK, E., 2011. Veterinary microbiology and microbial disease. John Wiley & Sons.

RAMÍREZ-CASTILLO, F.Y., MORENO-FLORES, A.C., AVELAR-GONZÁLEZ, F.J., MÁRQUEZ-DÍAZ, F., HAREL, J., and GUERRERO-BARRERA, A.L., 2018. An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: cross-sectional study. Annals of clinical microbiology and antimicrobials, 17(1), pp.1-13. http://dx.doi.org/10.1186/s12941-018-0286-5

SHABANA, I.I., ZARAKET, H., and SUZUKI, H., 2013. Molecular studies on diarrhea-associated Escherichia coli isolated from humans and animals in Egypt. Veterinary microbiology, 167(3-4), pp.532-539. http://dx.doi.org/10.1016/j.vetmic.2013.08.014

SHERLOCK, O., DOBRINDT, U., JENSEN, J.B., MUNK VEJBORG, R., and KLEMM, P., 2006. Glycosylation of the self-recognizing Escherichia coli Ag43 autotransporter protein. Journal of Bacteriology, 188(5), pp.1798-1807. http://dx.doi.org/10.1128/JB.188.5.1798-1807.2006

SWINSON, V. 2021. An update on joint ill in sheep. Veterinary Record, 188(1), pp.24-26. http://dx.doi.org/10.1002/vetr.118

TESSEMA, B., LIPPMANN, N., KNÜPFER, M., SACK, U., and KÖNIG, B., 2021. Antibiotic resistance patterns of bacterial isolates from neonatal sepsis patients at University Hospital of Leipzig, Germany. Antibiotics, 10(3), p.323. http://dx.doi.org/10.3390/antibiotics10030323

WORLD HEALTH ORGANIZATION, 2018. Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2017-2018. https://apps.who.int/iris/handle/10665 /259744.

YARATHA, G., PERLOFF, S., and CHANGALA, K., 2017. Lactose vs. non-lactose fermenting E. coli: epidemiology, clinical outcomes, and resistance. In Open forum infectious diseases (Vol. 4, No. suppl_1, pp. S589-S590). U.S.: Oxford University Press. http://dx.doi.org/10.1093/ofid/ofx163.1546

Statistics
Article View: 538
PDF Download: 537
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.