Nanonephrology in Veterinary Medicine: A Branch of Nanomedicine for Renal Diseases in Animals

E.K Al-Hamdany * and Thanoon Y. Al-hbiti

Department of veterinary pathology and poultry Diseases, college of veterinary medicine, University of Mosul, Mosul, Iraq.

*Corresponding Author, Entisar K. Al-Hamdany, E-Mail: ekalzory@uomosul.edu.iq

ABSTRACT

Nanotechnology is a fast-growing technology because of its capability to solve many problems related to animal production and health and plays important roles in the veterinary medicine field. Nanoparticles are characterized by minimal size, it has a role in the improvement of drug delivery, animal health and production. Also used as alternative antimicrobial agents instead of using large amounts of antibiotics, new drug and vaccine as delivery agents with improved characteristic and performance, diagnostic therapeutic, nutrient delivery, feed additive, biocidal agents and increase the quality of food by using many kinds of nanoparticles such as a polymeric nanoparticle, liposomes, dendrimers and metal nanoparticles. Nanonephrology is a branch of nanomedicine deals with the study of kidney proteins at the nano level and study of cellular structure and process that happened in the kidney with the help of imaging by nano technique and with use of very little size (nano size) particle in treatment of kidney disorder which include acute and chronic kidney disease. With the help of nanotechnology, we replace kidney transplantations and dialysis with low cost and safe animal and human life. Nanonephrology gives us information of molecular structure at the cellular level in normal kidneys functions and at pathological state by studying the chemical and physical characteristic of kidneys proteins and cells at the atomic level by design and structure of nanoparticles that will be matched to the renal cells thus safely and easily perform their function in the kidney. The advantages of nanonephrology in nanomedicine are focused on renal nano diagnostics for studies of basic renal function and early diagnosis of acute and chronic kidney disorders.

Keywords: kidney disease, Nanomedicine, Nanoparticles.

INTRODUCTION

Nanotechnology is a fast-moving technique originally developed around 1974 for the assembly of novel materials ranging from (1 to 100 nm) derived from the Latin word (nanus), which means very small in scale. (Underwood and VanEps, 2012; Manuja et al., 2012; Saha et al., 2011), it’s developed at atomic, molecular and macromolecular levels, it’s most important technologies of the 21st century, and it’s creating new probe devices and materials which has a wide range of application in medicine and veterinary medicine (Underwood and VanEps, 2012; Muthu et al., 2014; Hassanzadeh et al., 2018).

This technology takes an interest in numerous fields including agriculture, science and infection treatment and it has potential impacts for applications and researchers (Hill and Li, 2017; Hassanzadeh et al., 2017; Tassew Belete Bahru and Eyasu Gebrie Ajebe, 2019).

The application of nanotechnology in veterinary medicine is important in many branches of animal disease treatment (Fattal, 1989; Hong Ying Mao et al., 2013). Nanonephrology is the branch of nanotechnology and nanomedicine that deals with the study of kidney disorders (acute and chronic disease) at the atomic and cellular level, study kidney protein structure and treatment of the kidney diseases by nanoparticle which designed for kidney cells (Medina-
Reyes et al., 2017; Allen et al., 2005; Farokhzad and Langer, 2009; Num and Useh, 2013), creation and use of materials and devices that used for diagnosis and therapy of renal disease at molecular and atomic levels (Patil et al., 2009; Bhaskar et al., 2010; Williams et al., 2016). This will play the role treatment of patients with kidney disease in the future. (Lee et al., 2015; Garabed Eknoyan, 2017; Vaidya et al., 2010).

The positive impact of nanotechnology in nephrology is based on the development of renal nano diagnostics for basic renal function studies, the early diagnosis of acute and chronic kidney injury and improvement of magnetic resonance imaging while the disadvantage of nephrology is the renal clearance of nanoparticles (Nazila et al., 2016; Singh et al., 2011; Mahrunkh and Kianoush, 2017).

Application of Nanotechnology in Veterinary Medicine

Uses of nanotechnology in the veterinary field have a signification effect in numerous fields includes therapeutics, tissue building, diagnostics, immunization and disinfectants (El-Sayed and Kamel, 2018; Saini et al., 2010; Chen et al., 2016; Rajendran, 2013). The uses of nanotechnology in animal production include Vitamins, probiotics, executives of drug, untraditional supplement, detection and removed of causes of infection without surgery and similarly (Lee et al., 2015, Pisignano, 2007; Peer, 2007; Erathodiyi and Ying, 2011).

The creation of new synthetic molecular nanoparticles can help in the treatment of pet’s disease population and protect them from viral, bacterial infection and accelerate wound healing (Rai et al., 2009; Mishra, 2010; Meena et al., 2018), for examples feline hyperthyroidism is the common endocrine disorder affect cat so, Nanomedicine used to treat this disorder by manipulating the level of thyroxin 3 (T3) and thyroxin (T4) in the blood by maintaining secretion of the required level of drug thiamazole at the level which body needs. (Longson, 2007; Chakravarti and Balaji, 2010). Also using of normal antibiotics in animal production can leave a residue that affects the consumer (Human) while using of nanotechnology reduces the amount of antibiotics because of their small size (Nano size) (Longson 2007, Narducci, 2007; Yu et al., 2010; Wang et al., 2011).

Role of nanomaterials in Animals Health and Nutrition

Because of nanomaterials are in extensive, act as growth-promoting agent, utilized in low quantitates and good immune-stimulating agent so, it produces many benefits for animal feed production, they also manipulate feed pathogens and enhance fragmentation processes in rumen of animals (Swain et al., 2015; Zha et al., 2007; Zadeh and Moradi-kor, 2013). One of the most common Nanomaterials used in veterinary medicine is zinc oxide to improve growth rate, disorders affected livestock reproduction and to enhance immune response; diarrhea may be a side effect of using zinc oxide also decrease of somatic cell count in cows with subclinical mastitis (Bollo, 2007; Sanker et al., 2018; Thulasi et al., 2013; Rajendran et al., 2013; Scott, 2005).

Silver nanoparticles are used in pet animal care as disinfectants by mixed with shampoos for topical use (El-Sayed and Kamel, 2018; Ding Ping et al., 2018; Riley and Vermerris, 2017). Further application of nanotechnology in veterinary medicine is to raise the bio viability of nutrients and enhancement of growth rate and performance also many nanomaterials may be used with combination with hydrogels or zeolites to enhance the water excellent (Hill et al., 2017; Tang et al., 2019; Fengue, 2003; Mieszewska et al., 2013). Nanoparticles have an effect on sperm purification, so nanoparticle used to potentiate fertilization efficiency that in part facilitates fertilization of mono females from one collection (Medina- Reyes, 2017; Underwood and VanEps, 2012, Dilnawaz et al., 2015).

Nanonephrology

It is a nanotechnology nanomedicine come from Greek word (Nephros) that deals with the study of all cellular processes happened in kidney and protein present in the kidney at a nano-level with the use of nano-sized particles as nanomedicines in treatment of many kidney diseases (Pisignano, 2007; Lee et al., 2015).

Nanotechnology is a new technology that contributing to the development of Nephrology and study the different pathological condition that directly or indirectly affects the kidney function like diabetes, hypertension and autoimmune disease, so in future nanoparticle will play an important role in the treatment of patients with severe kidney disorders (Soriano et al., 2018; Rayan et al., 2016; Jain et al., 2011).

Nano nephrology will give all information about cells that involved in the function of the kidney at the pathological level (Pisignano, 2007; Liu et al., 2013). Nanoparticles in nephrology used as biomarkers in imaging technology so that many types of biomarker will be used in nephrology because the presence of these markers in blood and finally go to the kidney, filtered and excreted out of the body through urination and these biomarkers can be detected in urine by Eliza technique (Lee et al., 2013; Bollo, 2007).

Urine is common most suitable body fluid and can be easily collected so used for detecting changes of the pathophysiology of kidney disease; it is directly
filtrated by kidneys and containing many soluble biomarker proteins, ELISA is the main clinical approach for the sensitive measurement of protein biomarkers in urine and is applied in clinical laboratories for clinical markers measurement for detection of urinary system disorders (Despina et al., 2016; Rizzo et al., 2013).

Using of nanoparticles in nephrology to filter and purify the blood passing through the kidney and thus eliminate the need of kidney dialysis that is very expensive and very painful, so using of nanofiber are more useful and efficient compared with dialysis (Bayan et al., 2016; Rajiv Saini et al., 2012). Nanofiber used in the treatment of kidney disorders is much cheaper and not electric dependent than other techniques like dialysis (Rayan et al., 2016). Development of human nephron filter (HNF) is a new invention in Nano nephrology field applied to the human who is suffering from renal failure, and this invention will replace the need to kidney transplant and dialysis (Soriano et al., 2018, Lee et al., 2015; Sereemaspn et al., 2008).

Nanomedicine and nanoparticles for Animals renal diseases

Nanomedicines have a great interest for the diagnosis, treatment, and research of disease including renal diseases., nowadays Nanotechnology involves the engineering of molecules and atoms at the submicron level and delivery of drugs to specific tissues target (Wu et al., 2018; Pawar and Kaul, 2012). Nanomedicines in the clinic have reduced off-target side effects, increased solubility of drugs and provided diagnostic tools (Thomsen et al., 2013). Possible applications of nanotechnology in medical science as Therapeutic indication, Preventive indications and Diagnostic indications, there is an increase of Nanomaterials that may have particular implications for kidney diseases (Nazila et al., 2016). Organic or Inorganic nanocarriers, which refer to as nanoparticles, can be engineered to imaging agents or deliver drugs with unique characteristics. For example, nanoparticles delivery improves biodistribution and pharmacokinetics and enables targeted delivery of drugs to specific tissues, subcellular compartments or cells (Williams et al., 2016).

Nanoparticles can have either hollow aqueous or a solid core biodegradable, degradable and bio eliminable structures generally <150 nm in size as shown in Fig.1 (Nazila et al., 2016). The surface layer of these particles coated with inert polymers, these particles can shield from blood components. Polyethylene glycol, which is a type of polyethers, has been mostly used for this purpose. Surface layers core of the nanoparticles can be incorporated with a variety of payloads: hydrophobic or hydrophilic, proteins, small-molecule drugs, nucleic acids, peptides, or imaging agents (Houshang et al., 2013; Williams et al., 2016; Fady et al., 2019).

Fig.1: Nanoparticle composition and features (Nazila et al., 2016)

Clearance of Nanoparticle from Kidney

The absence of renal clearance and biodegradation of nanoparticles is considering a downside of Nanomaterials, as we know nanoparticles, as we know nanoparticles used in diagnostic and therapeutic purposes so, it can accumulate in the body tissue as many of them contain heavy metals on fluorescent agents (Choi et al., 2007, Patil, 2009; McBain et al., 2008). The renal clearance of nanoparticle depends on many factors like Shape, nature, hydroxylamine size, crystallinity, stability and surface activity (Lee et al., 2015; Buzza et al., 2007; Otto, 2015), so the coating of nephrotoxic drugs like anti-inflammatory agents and chemotherapeutic agents prevent kidney damage (Garabed, Ekuoyan, 2017; Faisal et al., 2007; Williams et al., 2015). If the hydrodynamic diameter of nanoparticles is less than (5-15nm) renal clearance is acceptable for examples after injection of quantum dots intravenously these particles with a small hydrodynamic diameter (4.36 nm) are cleared within 48 while those of (8.65 nm) diameter ham a half-life of clearance about (20 hours) (Bentolila, 2009; Michalet et al., 2005; Xu et al., 2017)

Mechanism of Elimination of Nanoparticle from Kidney

There are two mechanisms of eliminations of nanoparticles from the kidney: the direct one it's by glomerular filtration of these particles from kidney
tubular and the indirect mechanism elimination by biodegradation products (Kim et al., 2006; Ovidiu and marcel,2013; Nuray et al.,2016). A second route of elimination through the liver which is designated to capture and eliminate nanoparticle of (10-20 um) of hydrodynamic diameter like viruses but this consider a slower route (Rahimnejad et al.,2006; Sirirat et al.,2013; Tang et al., 2019; Raddy and Couvereur, 2011).

Study of Renal Function by Using Nano nephrology and Nano diagnostic of Kidney Diseases

Nano nephrology is an extension of nanomedicine with investigation of kidney processes at a cellular level. (Lee et al.,2015; Kukowska-latallo et al.,2005; Elgqvist,2018), recently using of nanotechnology in nephrology is to improve diagnosis of renal disease if normal epithelium is damaged by Ischemia or toxic agents, apoptosis, necrosis and cell death all there will be studies by using of nanotechnology and nano nephrology, and this indicated by a marked increase in blood urea and serum creatinine which means tissue damage (Rajiv Saini et al., 2012; Lee et al., 2015).

If the normal epithelium damage by Ischemia or toxic agents, there are two diagnostic methods for early indication of this damage the multiple marker strategy by using fluorimetric treatment system based on the combination of nanotechnology and microfluidics which depends on measuring the relative ratio of some biomarkers in urine, a second strategy is by detection lipocalin with neutrophil-gelatinase which is an early biomarker for acute renal failure which represents a significant disorder in clinical nephrology in a wide range of different disease processes Fig.2 (Vaidya et al.,2010; Li et al.,2015).

While the measurement of markers in blood does detection chronic renal disease, this diagnosis is based on the fact that renal failure changes the percentage of more than40 volatile organic compounds this is done by using of carbon-coated nanotubes as in the instrument called “electronic nose”, which is act as a sensor, it is available commercially (Haick et al.,2009; Soriano et al.,2018).

Nano regeneration of renal tissue

Nanotechnological structure supports (scaffolds) of different types: inorganic (e.g. mesoporous silica or quantum dots,)organic (e.g. nanocellulose, carbon nanotubes, and derivatives) and biological (e.g. use of clean renal tissue) is used for tissue and cellular Nano regeneration (Williams et al.,2016).The advantages of support scaffolds are: reproduces the extracellular native matrix, high cell compatibility, improves the properties of the conventional microstructured supports and promotes cell proliferation and adhesion (Guerrero et al.,2017). the growth of endothelial cells of the glomeruli capillaries is an example by using of fluorescence microscopy showed proliferation of endothelial cell during five days in nanostructured supports compared with conventional Fig.3 (Zhang and Webster,2009).

CONCLUSIONS

It has been concluded that nanotechnology and nano nephrology is a newly discovered technique, in which nanomaterials and nanoparticle used to purify and filter blood that passes through the kidney and there is no need to kidney dialysis that is very painful and coasted. This technique contributed to solving several problems in animal health and production, and it’s contributing to diagnosis, immunization, tissue building and disinfection. The nanotechnology in nephrology improved the old technique, discover and provide new tools and facilitated the discovery and

![Fig. 2: Time of application of two types of nano markers for early diagnosis (Vaidya et al.,2010).](image-url)
treatment of renal disorder with a fast time and low coated. In conclusion, Nano nephrology is still nano-
tools capable of improving therapies, diagnostic, renal
teragnosis and promoting the study of renal function. It
will be suggested that in the future we need to study
toxic and pathologic effects of nanoparticles in other
organs like liver, brain and heart. Therapeutics and
molecular diagnostics should be combined with
nanotechnology to improving diagnosis and treatment of
all animal diseases.

REFERENCES

ALLEN R NISSENSON, CLAUDIO RONCO, GAYLE
PERGAMIT, MARTIN EDELSTEIN AND
RICHARD WATTS.2005. Continuously functioning
artificial nephron system: the promise of nanotechnology.
hemodialysis international.9(3):210-217 doi.org/10.1111/j.1492-
7535.

BENTOLILLA LA, EBNSTEIN Y AND WEISS S.2009.
Quantum dots for in vivo small-animal imaging. j

BHASKAR S, TIAN F, STOEGER T, KREYLING W,
P Estrada G, NTZIACHRISTOS V., RAZANSKY D AND BHASKAR
S.2010.Multifunctional nanocarriers for diagnostics,
drug delivery and targeted treatment across blood-
brain barrier: perspectives on tracking and
bioimaging. part fibre Toxicol.;7:3.doi:
10.1186/1743-8977-7-3.

BOLLO E.2007. Nanotechnologies applied to veterinary
10.1007/s11259-007-0080-x.

ls and nanoparticles: sources and toxicity.
biointerphases.2:1–103. doi: 10.1116/1.2815690.

CHAKRAVARTHI, P AND SRI N. BALAJI.
2010.applications of nanotechnology in veterinary
medicine vikrama .veterinary world,3(10):477-480.

CHEN G, ROY I, YANG C AND PRASAD, P. N.
2016.Nanochemistry and nanomedicine for
nanoparticle-based diagnostics and therapy. Chem.
Rev. 116; 2826–2885.
https://doi.org/10.1021/acs.chemrev.5b00148.

CHOI HS, LIU W, MISRA P, TANAKA E, ZIMMER J
P AND ITTY B IPE.2007.Renal clearance of
quantum dots.Nat Biotechnol.25(10) :1165-
1170.http://dx.doi.org/10.1038/nbt1340.

DESHPAN CHATZIHARALAMBOUS, VASILIKIL
YGIROU, AGNIESZKA LATOSINSKA,
CONSTANTINOS STRAVODIMOS, ANTONIA
VLAHOU, VERA JANKOWSKI, AND JEROME
ZOIDAKIS.2016. Analytical Performance of ELISA
Assays in Urine: One More Bottleneck towards
Biomarker Validation and Clinical Implementation.
journal.pone.0149471.

DILNAWAZ F, SAHOO SK AND DILNAWAZ F.2015.
Therapeutic approaches of magnetic nanoparticles for
the central nervous system. drug discovery
today.20(10):1256-64. doi: 10.1016/j.drudis.
2015.06.008.

DING-PING BAI INT, XIN-YU LIN, YI-FAN HUANG
AND XI-FENG ZHANG .2018. Theranostics
aspects of various nanoparticles in veterinary
medicine. Int j mol sci. 24;19(11):3299. doi:
10.3390/ijms19113299.

ELGQVIST, J., 2018. Nanoparticles as theranostic vehicles
in experimental and clinical applications—focus on
prostate and breast cancer. Int j mol sci.18;1102.

EL-SAYED A AND KAMEL M.2018.Advanced
applications of nanotechnology in veterinary
medicine. environ sci pollut res int 27(16):19073-

ERATHODYI L N AND YING
JY.2011. Functionalization of inorganic
biomaterials for bioimaging applications. acc chem

FADY SAYED YOUSSEF, HOSSNY AWAD
ELBANNA, HESHAM YOUSSEF ELZORBA,
AND AHMED MOHAMED GALAL. 2019. Application of
some nanoparticles in the field of veterinary
medicine-int j vet sci med7(1): 78–93.

FAROKHZAD O C AND LANGER R. 2009.Impact of
nanotechnology on drug delivery. ACS nano. 3. 16–
20 .https://doi.org/10.1021/nn900002m.

Treatment of experimental salmonellosis in mice with
ampicillin-bound nanoparticles. Antimicrob agents
chemother.33:1540–1543. doi:
10.1128/aacl.33.9.1540.

FENEQUE, J., 2003. The future of nanopharmaceuticals in
veterinary medicine. http://www.nanotech-
now.com/jose--feneque/nanopharmaceuticals-and-
veterinary-medicine.htm.

FISSELL W H, HUMES H D, FLEISCHMAN A H
AND ROY S.2007.Dialysis and nanotechnology:
ow, 10 years, or never? Blood purif.25(1):12-7. doi:
10.1159/000096391.

GARABED E KNOYAN .2017.Nephrology: as it was
then, but is not Am J Kidney Dis. 69(1):129-135. doi:
10.1053/j.jkd.2016.06.029.

GUERRERO F, CARMONA A, ORTEGA R,
CA’NADILLAS S, CRESPO R, HERRERA
C.2017. Relevance of protein content within the
renal scaffold for kidney bioengineering and
26.30.

HAICK H, HAKIM M, PATRASCU M, LEVENBERC
Sniffing chronic renal failure in rat model by an array
of random networks of single-walled carbon
nanotubes. Sniffing chronic renal failure in rat by an
array of a random network of SWCNTs. ACS

HASSANZADEH P, ATYABI F, DINARVAND R AND
HASSANZADEH P.2017.Application of modelling
and nanotechnology-based approaches: the
emergence of breakthroughs in theranostics of central

Nanonephrology in Veterinary Medicine: A Branch of Nanomedicine

How to cite this article: